Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers


Dan Rockmore - 2005
    Now, at a moment when mathematicians are finally moving in on a proof, Dartmouth professor Dan Rockmore tells the riveting history of the hunt for a solution.In 1859 German professor Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the occurrence of the prime numbers. Rockmore takes us all the way from Euclid to the mysteries of quantum chaos to show how the Riemann hypothesis lies at the very heart of some of the most cutting-edge research going on today in physics and mathematics.

Multiple View Geometry in Computer Vision


Richard Hartley - 2000
    This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9

Student Solutions Manual for Contemporary Abstract Algebra


Joseph A. Gallian - 2009
    Contains complete worked solutions to all regular exercises and computer exercises in the text; additional test questions and their solutions; an online laboratory manual for the computer algebra system GAP, with exercises tied to the book and an instructor answer key; and links on the author's website to true/false questions, flash cards, essays, software downloads, and other abstract algebra-related materials.

Solutions Manual To Accompany Applied Mathematics And Modeling For Chemical Engineers


Richard G. Rice - 1996
    

Islamic Design: A Genius for Geometry


Daud Sutton - 2007
    Harmony is central. There are two key aspects to the visual structure of Islamic design, calligraphy using Arabic script-one of the world's great calligraphic traditions-and abstract ornamentation using a varied but remarkably integrated visual language. This art of pure ornament revolves around two central themes; crystalline geometric patterns, the harmonic and symmetrical subdivision of the plane giving rise to intricately interwoven designs that speak of infinity and the omnipresent center; and idealized plant form, spiraling tendrils, leaves, buds and flowers embodying organic life and rhythm.1. WIDE APPEAL: Anyone interested in science, mathematics, design, architecture, and the natural world.2. AUTHORITATIVE: A compelling blend of scholarship and visual presentation, packs an enormous amount of information into a short space.3. BEAUTIFUL PACKAGE: A bargain at $10.00. Winner of First Prize for Nonfiction at the New York Book Show4. SERIES PURPOSE: All are aimed at bringing ancient wisdom forward into the 21st century.5. INSPIRING: The perfect entrée into a challenging topic; will inspire other reading.

Student Solutions Guide For Discrete Mathematics And Its Applications


Kenneth H. Rosen - 1988
    These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.

Elementary Linear Algebra with Applications


Bernard Kolman - 1995
    It offers a fine balance between abstraction/theory and computational skills, and gives readers an excellent opportunity to learn how to handle abstract concepts. Included in this comprehensive and easy-to-follow manual are these topics: linear equations and matrices; solving linear systems; real vector spaces; inner product spaces; linear transformations and matrices; determinants; eigenvalues and eigenvectors; differential equations; and MATLAB for linear algebra. Because this book gives real applications for linear algebraic basic ideas and computational techniques, it is useful as a reference work for mathematicians and those in field of computer science.

How to Count to Infinity


Marcus du Sautoy - 2020
    But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached. By the end of this book you'll be able to count to infinity... and beyond. On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!

Differential Geometry


Erwin Kreyszig - 1991
    With problems and solutions. Includes 99 illustrations.

Challenge And Thrill Of Pre College Mathematics


V. Krishnamurthy - 2009
    It can urge the reader to explore new methodologies to have maximum fun with numbers, and opt for a higher course in mathematics. The book was specifically designed to help the student community, and develop a strong affinity towards problem solving.the book offers many complicated, and interesting challenges for the user, keeping them engaged throughout. A large number of solved problems are also included in challenge and thrill of pre-college mathematics, to give readers an insight into the subject. The book can be an eye-opener for school students of class 7 and above. The materials given in the book are powerful enough to help them develop a strong interest for the subject. The concepts are explained in a simple and comprehensive manner, providing them with a good understanding of mathematical fundamentals.what makes the book distinct is its detailed sections on geometry, that can improve the reasoning skills of students. There are also detailed accounts on algebra and trigonometry, enhancing the competitive ability of the users. The topics such as combinatorics, number theory, and probability are also explained in detail, in the book. Each chapter was designed with the intention of motivating students to appreciate the excitement that mathematical problems can provide. Published in 2003 by new age international publishers, the book is available in paperback. Key features: the book includes a collection of more than 300 solved numerical problems, compiled from various national, as well as international mathematical olympiads.it is widely recommended by students and teachers, alike as an essential preparatory book for those writing competitive examinations.

Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry


George F. Simmons - 1981
    . . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.

Flatland: A Romance of Many Dimensions


Edwin A. Abbott - 1884
    The work of English clergyman, educator and Shakespearean scholar Edwin A. Abbott (1838-1926), it describes the journeys of A. Square [sic – ed.], a mathematician and resident of the two-dimensional Flatland, where women-thin, straight lines-are the lowliest of shapes, and where men may have any number of sides, depending on their social status.Through strange occurrences that bring him into contact with a host of geometric forms, Square has adventures in Spaceland (three dimensions), Lineland (one dimension) and Pointland (no dimensions) and ultimately entertains thoughts of visiting a land of four dimensions—a revolutionary idea for which he is returned to his two-dimensional world. Charmingly illustrated by the author, Flatland is not only fascinating reading, it is still a first-rate fictional introduction to the concept of the multiple dimensions of space. "Instructive, entertaining, and stimulating to the imagination." — Mathematics Teacher.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

New Additional Mathematics


Ho Soo Thong
    

Shape: The Hidden Geometry of Information, Biology, Strategy, Democracy, and Everything Else


Jordan Ellenberg - 2021
    For real.If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel.Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry," from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.