Book picks similar to
Distributed Systems by Sape Mullender
distributed-systems
computer
computer-science
9409
Getting Clojure
Russ Olsen - 2018
The vision behind Clojure is of a radically simple language framework holding together a sophisticated collection of programming features. Learning Clojure involves much more than just learning the mechanics of the language. To really get Clojure you need to understand the ideas underlying this structure of framework and features. You need this book: an accessible introduction to Clojure that focuses on the ideas behind the language as well as the practical details of writing code.
Java Software Solutions: Foundations of Program Design
John Lewis - 1997
This new edition has an earlier evolution of object concepts, developed in a way that capitalizes on the power of objects without overwhelming beginning programmers. It includes all new Java 5 topics, including Scanner class, enumerated types, autoboxing, variable length parameter lists, the enhanced for loop, and generic types. This is in depth coverage on GUI applications. This book is appropriate for beginning programmers who want to learn to program with Java as well as experienced programmers who want to add Java to their skill-set.
Building Java Programs: A Back to Basics Approach
Stuart Reges - 2007
By using objects early to solve interesting problems and defining objects later in the course, Building Java Programs develops programming knowledge for a broad audience. Introduction to Java Programming, Primitive Data and Definite Loops, Introduction to Parameters and Objects, Conditional Execution, Program Logic and Indefinite Loops, File Processing, Arrays, Defining Classes, Inheritance and Interfaces, ArrayLists, Java Collections Framework, Recursion, Searching and Sorting, Graphical User Interfaces. For all readers interested in introductory programming.
The Hundred-Page Machine Learning Book
Andriy Burkov - 2019
During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.
Computer Organization & Design: The Hardware/Software Interface
David A. Patterson - 1993
More importantly, this book provides a framework for thinking about computer organization and design that will enable the reader to continue the lifetime of learning necessary for staying at the forefront of this competitive discipline. --John Crawford Intel Fellow Director of Microprocessor Architecture, Intel The performance of software systems is dramatically affected by how well software designers understand the basic hardware technologies at work in a system. Similarly, hardware designers must understand the far reaching effects their design decisions have on software applications. For readers in either category, this classic introduction to the field provides a deep look into the computer. It demonstrates the relationship between the software and hardware and focuses on the foundational concepts that are the basis for current computer design. Using a distinctive learning by evolution approach the authors present each idea from its first principles, guiding readers through a series of worked examples that incrementally add more complex instructions until they ha
Head First Python
Paul Barry - 2010
You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you.We think your time is too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Python uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Doing Data Science
Cathy O'Neil - 2013
But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
CCENT/CCNA ICND1 100-105 Official Cert Guide
Wendell Odom - 2016
They are built with the objective of providing assessment, review, and practice to help ensure you are fully prepared for your certification exam. Master Cisco CCENT/CCNA ICND1 100-105 exam topics Assess your knowledge with chapter-opening quizzes Review key concepts with exam preparation tasks This is the eBook edition of the CCENT/CCNA ICND1 100-105 Official Cert Guide. This eBook does not include the companion CD-ROM with practice exam that comes with the print edition. CCENT/CCNA ICND1 100-105 Official Cert Guide presents you with an organized test-preparation routine through the use of proven series elements and techniques. “Do I Know This Already?” quizzes open each chapter and enable you to decide how much time you need to spend on each section. Exam topic lists make referencing easy. Chapter-ending Exam Preparation Tasks help you drill on key concepts you must know thoroughly. CCENT/CCNA ICND1 100-105 Official Cert Guide from Cisco Press enables you to succeed on the exam the first time and is the only self-study resource approved by Cisco. Best-selling author and expert instructor Wendell Odom shares preparation hints and test-taking tips, helping you identify areas of weakness and improve both your conceptual knowledge and hands-on skills. This complete study package includes · A test-preparation routine proven to help you pass the exams · Do I Know This Already? quizzes, which enable you to decide how much time you need to spend on each section · Chapter-ending and part-ending exercises, which help you drill on key concepts you must know thoroughly · Troubleshooting sections, which help you master the complex scenarios you will face on the exam · A free copy of the CCENT ICND1 100-105 Network Simulator Lite software, complete with meaningful lab exercises that help you hone your hands-on skills with the command-line interface for routers and switches · Links to a series of hands-on config labs developed by the author · Online, interactive practice exercises that help you hone your knowledge · More than 90 minutes of video mentoring from the author · A final preparation chapter, which guides you through tools and resources to help you craft your review and test-taking strategies · Study plan suggestions and templates to help you organize and optimize your study time Well regarded for its level of detail, study plans, assessment features, challenging review questions and exercises, video instruction, and hands-on labs, this official study guide helps you master the concepts and techniques that ensure your exam success. This official study guide helps you master all the topics on the CCENT/CCNA ICND1 exam, including · Networking fundamentals · Implementing basic Ethernet LANs · Ethernet LANs: design, VLANs, and troubleshooting · IPv4 addressing and subnetting · Implementing IPv4 · IPv4 design and troubleshooting ...
C++ Primer
Stanley B. Lippman - 1989
This Fourth Edition not only keeps this tradition alive, it actually improves on it."--Steve Vinoski, Chief Engineer, Product Innovation, IONA Technologies" The Primer really brings this large and complex language down to size."--Justin Shaw, Senior Member of Technical Staff, Electronic Programs Division, The Aerospace Corporation"It not only gets novices up and running early, but gets them to do so using good programming practices."--Nevin ": -)" Liber, Senior Principal Engineer (C++ developer since 1988)This popular tutorial introduction to standard C++ has been completely updated, reorganized, and rewritten to help programmers learn the language faster and use it in a more modern, effective way.Just as C++ has evolved since the last edition, so has the authors' approach to teaching it. They now introduce the C++ standard library from the beginning, giving readers the means to write useful programs without first having to master every language detail. Highlighting today's best practices, they show how to write programs that are safe, can be built quickly, and yet offer outstanding performance. Examples that take advantage of the library, and explain the features of C++, also show how to make the best use of the language. As in its previous editions, the book's authoritative discussion of fundamental C++ concepts and techniques makes it a valuable resource even for more experienced programmers.Program Faster and More Effectively with This Rewritten ClassicRestructured for quicker learning, using the C++ standard libraryUpdated to teach the most current programming styles and program design techniquesFilled with new learning aids that emphasize important points, warn about common pitfalls, suggest good programming practices, and provide general usage tipsComplete with exercises that reinforce skills learnedAuthoritative and comprehensive in its coverage The source code for the book's extended examples is available on the Web at the address below.www.awprofessional.com/cpp_primer
Engineering a Compiler
Keith D. Cooper - 2003
No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.
Natural Language Processing with Python
Steven Bird - 2009
With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.