Mathematical Methods for Physics and Engineering: A Comprehensive Guide


K.F. Riley - 1998
    As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

The Principles of Mathematics


Bertrand Russell - 1903
    Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.

Computational Complexity


Sanjeev Arora - 2007
    Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

Mathematics for Human Flourishing


Francis Su - 2020
    To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, and award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires - such as for play, beauty, freedom, justice, and love - and cultivates virtues essential for human flourishing.These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's and Christopher Jackson, who discovered mathematics as an inmate in a federal prison.Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can - and must - be open to all.PLEASE NOTE: If purchasing this title in the Audible version, the accompanying PDF will be available in your Audible Library along with the audio.RUNNING TIME ⇒ 6hrs. and 52mins.©2020 Francis Edward Su (P)2020 Tantor

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

Elementary Number Theory


David M. Burton - 1976
    It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.

Introduction to Probability


Joseph K. Blitzstein - 2014
    The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Introduction to Linear Algebra


Gilbert Strang - 1993
    Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.

Geek Logik: 50 Foolproof Equations for Everyday Life


Garth Sundem - 2006
    Call it the algebra oracle: By plugging in the right variables, GEEK LOGIK answers life’s most persistent questions. It covers Dating and Romance, Career and Finance, and everyday decisions like Should I get a tattoo? Can I still wear tight jeans? Is it time to see a therapist? How many beers should I have at the company picnic? How does it work? Take a simple issue that comes up once or twice a week: Should I call in sick? Fill in the variables honestly, such as D for doctor’s note (enter 1 for “no,†10 for “yes,†and 5 for “yes, but it’s a forgeryâ€), R for importance of job (1-10, with 10 being “personally responsible for Earth’s orbit around Sunâ€), Fj for how much fun you have at work (1-10, with 10 being “personal trainer for underwear modelsâ€), N for how much you need the money (1-10, with 10 being “I owe the mobâ€), then do the math, and voilà—if the product, Hooky, is greater than 1, enjoy your very own Ferris Bueller’s Day Off. Includes a pocket calculator so that prospective geeks can immediately solve the equation on the back cover: Should I buy this book?

Making Numbers Count: The Art and Science of Communicating Numbers


Chip Heath - 2022
    In Making Numbers Count, Chip Heath argues that it's crucial for us all to be able to interpret and communicate numbers and stats more effectively so that data comes alive. By combining years of research into making ideas stick with a deep understanding of how the brain really works, Heath has discerned six critical principles that will give anyone the tools to communicate numbers with more transparency and meaning. These ideas - including simplicity, concreteness and familiarity - reveal what's compelling about a number and show how to transform it into its most understandable form. And if we can do this when we're using numbers, Heath tells us, then the idea of data won't drive people to panic. We're not hungry for numbers - there's an unfathomable amount of information being generated each year - but we are starved for meaning. The ability to communicate and understand numbers has never mattered more.

Elementary Statistics


Mario F. Triola - 1983
    This text is highly regarded because of its engaging and understandable introduction to statistics. The author's commitment to providing student-friendly guidance through the material and giving students opportunities to apply their newly learned skills in a real-world context has made Elementary Statistics the #1 best-seller in the market.

Principia Mathematica to '56


Alfred North Whitehead - 1913
    Its aim is to deduce all the fundamental propositions of logic and mathematics from a small number of logical premises and primitive ideas, establishing that mathematics is a development of logic. This abridged text of Volume I contains the material that is most relevant to an introductory study of logic and the philosophy of mathematics (more advanced students will of course wish to refer to the complete edition). It contains the whole of the preliminary sections (which present the authors' justification of the philosophical standpoint adopted at the outset of their work); the whole of Part I (in which the logical properties of propositions, propositional functions, classes and relations are established); section A of Part II (dealing with unit classes and couples); and Appendices A and C (which give further developments of the argument on the theory of deduction and truth functions).