Book picks similar to
The Cosmic Code: Quantum Physics as the Language of Nature by Heinz R. Pagels
science
physics
non-fiction
nonfiction
Mathematics: The Loss of Certainty
Morris Kline - 1980
Mathematics: The Loss of Certainty refutes that myth.
Einstein's Relativity and the Quantum Revolution: Modern Physics for Non-Scientists
Richard Wolfson - 2000
Relativity and quantum physics touch the very basis of physical reality, altering our commonsense notions of space and time, cause and effect. Both have reputations for complexity. But the basic ideas behind relativity and quantum physics are, in fact, simple and comprehensible by anyone. As Professor Wolfson points out, the essence of relativity can be summed up in a single sentence: The laws of physics are the same for all observers in uniform motion. The same goes for quantum theory, which is based on the principle that the "stuff " of the universe-matter and energy-is not infinitely divisible but comes in discrete chunks called "quanta." Profound ... Beautiful ... Relevant Why should you care about these landmark theories? Because relativity and quantum physics are not only profound and beautiful ideas in their own right, they are also the gateway to understanding many of the latest science stories in the media. These are the stories about time travel, string theory, black holes, space telescopes, particle accelerators, and other cutting-edge developments. Consider these ideas: Although Einstein's theory of general relativity dates from 1914, it has not been possible to test certain predictions until recently. The Hubble Space Telescope is providing some of the most striking confirmations of the theory, including certain evidence for the existence of black holes, objects that warp space and time so that not even light can escape. Also, the expansion of the universe predicted by the theory of general relativity is now a known rate. General relativity also predicts an even weirder phenomenon called "wormholes" that offer shortcuts to remote reaches of time and space. According to Einstein's theory of special relativity, two twins would age at different rates if one left on a high-speed journey to a distant star and then returned. This experiment has actually been done, not with twins, but with an atomic clock flown around the world. Another fascinating experiment confirming that time slows as speed increases comes from measuring muons at the top and bottom of mountains. A seemingly absurd consequence of quantum mechanics, called "quantum tunneling," makes it possible for objects to materialize through impenetrable barriers. Quantum tunneling happens all the time on the subatomic scale and plays an important role in electronic devices and the nuclear processes that keep the sun shining. Some predictions about the expansion of the universe were so odd that Einstein himself tried to rewrite the mathematics in order to eliminate them. When Hubble discovered the expansion of the universe, Einstein called the revisions the biggest mistake he had ever made. An intriguing thought experiment called "Schrödinger's cat" suggests that a cat in an enclosed box is simultaneously alive and dead under experimental conditions involving quantum phenomena. From Aristotle to the Theory of Everything Professor Wolfson begins with a brief overview of theories of physical reality starting with Aristotle and culminating in Newtonian or "classical" physics. Then he outlines the logic that led to Einstein's theory of special relativity, and the simple yet far-reaching insight on which it rests. With that insight in mind, you move on to consider Einstein's theory of general relativity and its interpretation of gravitation in terms of the curvature of space and time. Professor Wolfson then shows how inquiry into matter at the atomic and subatomic scales led to quandaries that are resolved-or at least clarified-by quantum mechanics, a vision of physical reality so at odds with our experience that it nearly defies language. Bringing relativity and quantum mechanics into the same picture leads to hypotheses about the origin, development, and possible futures of the entire universe, and the possibility that physics can produce a "theory of everything" to account for all aspects of the physical world. Fascinating Incidents and Ideas Along the way, you'll explore these fascinating incidents and ideas: In the 1880s, Albert Michelson and Edward Morley conducted an experiment to determine the motion of the Earth relative to the ether, which was a supposedly imponderable substance pervading all of space. You'll learn about their experiment, its shocking result, and the resulting theoretical crisis. In 1905, a young Swiss patent clerk named Albert Einstein resolved the crisis by discarding the ether concept and asserting the principle of relativity-that the laws of physics are the same for all observers in uniform motion. Relativity implies that the time order of events can be different in different reference frames. Does this wreak havoc with cause and effect? And why does Einstein assert that nothing can go faster than light? Shortly after publishing his 1905 paper on special relativity, Einstein realized that his theory required a fundamental equivalence between mass and energy, which he expressed in the equation E=mc2. Among other things, this famous formula means that the energy contained in a single raisin could power a large city for a whole day. Historically, the path to general relativity followed Einstein's attempt to incorporate gravity into relativity theory, which led to his understanding of gravity not as a force, but as a local manifestation of geometry in curved spacetime. Quantum theory places severe limits on our ability to observe nature at the atomic scale because it implies that the act of observation necessarily disturbs the thing that is being observed. The result is Werner Heisenberg's famous "uncertainty principle." Are quarks, the particles that make up protons and neutrons, the truly elementary particles? What are the three fundamental forces that physicists identify as holding particles together? Could they be manifestations of a single, universal force? A Teaching Legend On his own Middlebury College campus, Professor Wolfson is a teaching legend with an infectious enthusiasm for his subject and a knack for conveying difficult concepts in a way that fosters true understanding. He is the author of an introductory text on physics, a contributor to the esteemed publication Scientific American, and a specialist in interpreting science for the nonspecialist. In this course, Professor Wolfson uses extensive illustrations and diagrams to help bring to life the theories and concepts that he discusses. Thus we highly recommend our DVD version, although Professor Wolfson is mindful of our audio students and carefully describes visual materials throughout his lectures. Professor Richard Wolfson on the Second Edition of Einstein's Relativity: "The first version of this course was produced in 1995. In this new version, I have chosen to spend more time on the philosophical interpretation of quantum physics, and on recent experiments relevant to that interpretation. I have also added a final lecture on the theory of everything and its possible implementation through string theory. The graphic presentations for the DVD version have also been extensively revised and enhanced. But the goal remains the same: to present the key ideas of modern physics in a way that makes them clear to the interested layperson."
The Quantum Story: A History in 40 Moments
Jim Baggott - 2011
From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it.Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents.Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it.This is quantum theory, and this book tells its story.Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes -- significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world.Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
The Living Thoughts of Kierkegaard
Søren Kierkegaard - 1952
Auden's inspired and incisive response to a thinker who had done much to shape his own beliefs is a fundamental reading of an author whose spirit remains as radical as ever more than 150 years after he wrote.Translated from the Danish by Walter Lowrie, David Swenson, and Alexander Dru.
Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking
Charles Seife - 2008
When weapons builders detonated the first hydrogen bomb in 1952, they tapped into the vastest source of energy in our solar system--the very same phenomenon that makes the sun shine. Nuclear fusion was a virtually unlimited source of power that became the center of a tragic and comic quest that has left scores of scientists battered and disgraced. For the past half-century, governments and research teams have tried to bottle the sun with lasers, magnets, sound waves, particle beams, and chunks of metal, have struggled to harness the power of fusion. (The latest venture, a giant, multi-billion-dollar, international fusion project called ITER, is just now getting underway.) Again and again, they have failed, disgracing generations of scientists. Throughout this fascinating journey Charles Seife introduces us to the daring geniuses, villains, and victims of fusion science: the brilliant and tortured Andrei Sakharov; the monomaniacal and Strangelovean Edward Teller; Ronald Richter, the secretive physicist whose lies embarrassed an entire country; and Stanley Pons and Martin Fleischmann, the two chemists behind the greatest scientific fiasco of the past hundred years. Sun in a Bottle is the first major book to trace the story of fusion from its beginnings into the 21st century, of how scientists have gotten burned by trying to harness the power of the sun.
Introducing Quantum Theory: A Graphic Guide
J.P. McEvoy - 1992
At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.
A Short History of Nearly Everything
Bill Bryson - 2003
Taking as territory everything from the Big Bang to the rise of civilization, Bryson seeks to understand how we got from there being nothing at all to there being us. To that end, he has attached himself to a host of the world’s most advanced (and often obsessed) archaeologists, anthropologists, and mathematicians, travelling to their offices, laboratories, and field camps. He has read (or tried to read) their books, pestered them with questions, apprenticed himself to their powerful minds. A Short History of Nearly Everything is the record of this quest, and it is a sometimes profound, sometimes funny, and always supremely clear and entertaining adventure in the realms of human knowledge, as only Bill Bryson can render it. Science has never been more involving or entertaining.
Why Does the World Exist?: An Existential Detective Story
Jim Holt - 2011
Following in the footsteps of Christopher Hitchens, Roger Penrose, and even Stephen Hawking, Jim Holt now enters this fractious debate with his lively and deeply informed narrative that traces the latest efforts to grasp the origins of the universe. The slyly humorous Holt takes on the role of cosmological detective, suggesting that we might have been too narrow in limiting our suspects to Yahweh vs. the Big Bang. Tracking down an eccentric Oxford philosopher, a Physics Nobel Laureate, a French Buddhist monk who lived with the Dalai Lama, and John Updike just before he died, Holt pursues unexplored angles to this cosmic puzzle. As he pieces together a solution--one that sheds new light on the question of God and the meaning of existence--he offers brisk philosophical asides on time and eternity, consciousness, and the arithmetic of nothingness.“The pleasure of this book is watching the match: the staggeringly inventive human mind slamming its fantastic conjectures over the net, the universe coolly returning every serve.... Holt traffics in wonder, a word whose dual meanings—the absence of answers; the experience of awe—strike me as profoundly related. His book is not utilitarian. You can’t profit from it, at least not in the narrow sense.... And yet it does what real science writing should: It helps us feel the fullness of the problem.” (Kathryn Schulz, New York Magazine)" Jim Holt leaves us with the question Stephen Hawking once asked but couldn't answer, ‘Why does the universe go through all the bother of existing?’” (Ron Rosenbaum, Slate )
The Five Ages of the Universe: Inside the Physics of Eternity
Fred Adams - 1999
In The Five Ages of the Universe, Adams and Laughlin demonstrate that we can now understand the complete life story of the cosmos from beginning to end. Adams and Laughlin have been hailed as the creators of the definitive long-term projection of the evolution of the universe. Their achievement is awesome in its scale and profound in its scientific breadth. But The Five Ages of the Universe is more than a handbook of the physical processes that guided our past and will shape our future; it is a truly epic story. Without leaving earth, here is a fantastic voyage to the physics of eternity. It is the only biography of the universe you will ever need.
The Village of Waiting
George Packer - 1988
Stationed as a Peace Corps instructor in the village of Lavié (the name means "wait a little more") in tiny and underdeveloped Togo, Packer reveals his own schooling at the hands of an unforgettable array of townspeople--peasants, chiefs, charlatans, children, market women, cripples, crazies, and those who, having lost or given up much of their traditional identity and fastened their hopes on "development," find themselves trapped between the familiar repetitions of rural life and the chafing monotony of waiting for change.
The Universe in Your Hand: A Journey Through Space, Time, and Beyond
Christophe Galfard - 2015
Frizzle were a physics student of Stephen Hawking, she might have written THE UNIVERSE IN YOUR HAND, a wild tour through the reaches of time and space, from the interior of a proton to the Big Bang to the rough suburbs of a black hole. It's friendly, excitable, erudite, and cosmic."—Jordan Ellenberg, New York Times besteselling author of How Not To Be WrongQuantum physics, black holes, string theory, the Big Bang, dark matter, dark energy, parallel universes: even if we are interested in these fundamental concepts of our world, their language is the language of math. Which means that despite our best intentions of finally grasping, say, Einstein's Theory of General Relativity, most of us are quickly brought up short by a snarl of nasty equations or an incomprehensible graph.Christophe Galfard's mission in life is to spread modern scientific ideas to the general public in entertaining ways. Using his considerable skills as a brilliant theoretical physicist and successful young adult author, The Universe in Your Hand employs the immediacy of simple, direct language to show us, not explain to us, the theories that underpin everything we know about our universe. To understand what happens to a dying star, we are asked to picture ourselves floating in space in front of it. To get acquainted with the quantum world, we are shrunk to the size of an atom and then taken on a journey. Employing everyday similes and metaphors, addressing the reader directly, and writing stories rather than equations renders these astoundingly complex ideas in an immediate and visceral way.Utterly captivating and entirely unique, The Universe in Your Hand will find its place among other classics in the field.
Extraterrestrial: The First Sign of Intelligent Life Beyond Earth
Avi Loeb - 2021
In late 2017, scientists at a Hawaiian observatory glimpsed an object soaring through our inner solar system, moving so quickly that it could only have come from another star. Avi Loeb, Harvard’s top astronomer, showed it was not an asteroid; it was moving too fast along a strange orbit, and left no trail of gas or debris in its wake. There was only one conceivable explanation: the object was a piece of advanced technology created by a distant alien civilization. In Extraterrestrial, Loeb takes readers inside the thrilling story of the first interstellar visitor to be spotted in our solar system. He outlines his controversial theory and its profound implications: for science, for religion, and for the future of our species and our planet. A mind-bending journey through the furthest reaches of science, space-time, and the human imagination, Extraterrestrial challenges readers to aim for the stars—and to think critically about what’s out there, no matter how strange it seems.
The Structure of Scientific Revolutions
Thomas S. Kuhn - 1962
The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach. With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age. This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context. Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.
Prisoner without a Name, Cell without a Number
Jacobo Timerman - 1980
He returned to Argentina in 1984. Founder of two Argentine weekly news magazines in the 1960s and a commentator on radio and television, he was best-known as the publisher and editor of the newspaper La Opinión from 1971 until his arrest in 1977. An outspoken champion of human rights and freedom of the press, he criticized all repressive governments and organizations, regardless of their political ideologies. His other books include The Longest War: Israel in Lebanon, Cuba: A Journey, and Chile: A Death in the South.The Americas, Ilan Stavans, Series EditorWinner of a 1982 Los Angeles Times Book Prize Selected by the New York Times for "Books of the Century" With a new introduction by Ilan Stavans and a new foreword by Arthur Miller.
The Auberge Of The Flowering Hearth
Roy Andries de Groot - 1973
Impressed by the devotion of its owners — les Mesdemoiselles Artraud and Girard — to perpetuating the tradition of supreme country dining, Mr. de Groot returned to the inn to record their recipes for natural country soups, heavy winter stews, roasted meats, pâtes, terrines, and fruity and spirituous desserts — the best of French cooking.Superb food, fine wine, and the perfect blending of both into a series of menus for memorable lunches and dinners, together with the unique French Alpine recipes that build each meal — these are the ingredients of this remarkable book, now considered a classic.