Machine Learning


Ethem Alpaydin - 2016
    It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpayd�n offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpayd�n, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.

Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium Proprocessor, Pentium II, III, 4


Barry B. Brey - 1991
    This text provides a comprehensive view of programming and interfacing of the Intel family of Microprocessors from the 8088 through the latest Pentium 4 microprocessor. Organized in an orderly and manageable format, it offers over 200 programming examples using the Microsoft Macro Assembler program, and provides a thorough description of each Intel family members, memory systems, and various I/O systems.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Incerto 4-Book Bundle: Antifragile, The Black Swan, Fooled by Randomness, The Bed of Procrustes


Nassim Nicholas Taleb - 2011
    All four volumes—Antifragile, The Black Swan, Fooled by Randomness, and the special expanded edition of The Bed of Procrustes, updated with more than 50 percent new material—are now together in one ebook bundle.  ANTIFRAGILE  “Startling . . . richly crammed with insights, stories, fine phrases and intriguing asides.”—The Wall Street Journal   Just as human bones get stronger when subjected to stress and tension, many things in life benefit from disorder, volatility, and turmoil. What Taleb has identified and calls “antifragile” is that category of things that not only gain from chaos but need it in order to survive and flourish. The resilient resists shocks and stays the same; the antifragile gets better and better. What is crucial is that the antifragile loves errors, as it incurs small harm and large benefits from them. Spanning politics, urban planning, war, personal finance, economic systems, and medicine in an interdisciplinary and erudite style, Antifragile is a blueprint for living in a Black Swan world.  THE BLACK SWAN “The Black Swan changed my view of how the world works.”—Daniel Kahneman, Nobel laureate   A black swan is a highly improbable event with three principal characteristics: It is unpredictable; it carries a massive impact; and, after the fact, we concoct an explanation that makes it appear less random and more predictable. The astonishing success of Google was a black swan; so was 9/11. In this groundbreaking and prophetic book, Taleb shows that black swan events underlie almost everything about our world, from the rise of religions to events in our own personal lives, and yet we—especially the experts—are blind to them.  FOOLED BY RANDOMNESS “[Fooled by Randomness] is to conventional Wall Street wisdom approximately what Martin Luther’s ninety-five theses were to the Catholic Church.”—Malcolm Gladwell, The New Yorker   Are we capable of distinguishing the fortunate charlatan from the genuine visionary? Must we always try to uncover nonexistent messages in random events? Fooled by Randomness is about luck: more precisely, about how we perceive luck in our personal and professional experiences. Set against the backdrop of the most conspicuous forum in which luck is mistaken for skill—the markets—Fooled by Randomness is an irreverent, eye-opening, and endlessly entertaining exploration of one of the least understood forces in our lives.  THE BED OF PROCRUSTES “Taleb’s crystalline nuggets of thought stand alone like esoteric poems.”—Financial Times   This collection of aphorisms and meditations expresses Taleb’s major ideas in ways you least expect. The Bed of Procrustes takes its title from Greek mythology: the story of a man who made his visitors fit his bed to perfection by either stretching them or cutting their limbs. With a rare combination of pointed wit and potent wisdom, Taleb plows through human illusions, contrasting the classical views of courage, elegance, and erudition against the modern diseases of nerdiness, philistinism, and phoniness.

Introducing Microsoft Power BI


Alberto Ferrari - 2016
    Stay in the know, spot trends as they happen, and push your business to new limits. This e-book introduces Microsoft Power BI basics through a practical, scenario-based guided tour of the tool, showing you how to build analytical solutions using Power BI. Get an overview of Power BI, or dig deeper and follow along on your PC using the book's examples.

Introduction To Chemical Engineering


J.T. Banchero W.L. Badger
    

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Data Visualisation: A Handbook for Data Driven Design


Andy Kirk - 2016
    Scholars and students need to be able to analyze, design and curate information into useful tools of communication, insight and understanding. This book is the starting point in learning the process and skills of data visualization, teaching the concepts and skills of how to present data and inspiring effective visual design. Benefits of this book: A flexible step-by-step journey that equips you to achieve great data visualization.A curated collection of classic and contemporary examples, giving illustrations of good and bad practice Examples on every page to give creative inspiration Illustrations of good and bad practice show you how to critically evaluate and improve your own work Advice and experience from the best designers in the field Loads of online practical help, checklists, case studies and exercises make this the most comprehensive text available

Uncharted: Big Data and an Emerging Science of Human History


Erez Aiden - 2013
    Gigabytes, exabytes (that’s one quintillion bytes) of data are sitting on servers across the world. So how can we start to access this explosion of information, this “big data,” and what can it tell us?   Erez Aiden and Jean-Baptiste Michel are two young scientists at Harvard who started to ask those questions. They teamed up with Google to create the Ngram Viewer, a Web-based tool that can chart words throughout the massive Google Books archive, sifting through billions of words to find fascinating cultural trends. On the day that the Ngram Viewer debuted in 2010, more than one million queries were run through it.   On the front lines of Big Data, Aiden and Michel realized that this big dataset—the Google Books archive that contains remarkable information on the human experience—had huge implications for looking at our shared human history. The tool they developed to delve into the data has enabled researchers to track how our language has evolved over time, how art has been censored, how fame can grow and fade, how nations trend toward war. How we remember and how we forget. And ultimately, how Big Data is changing the game for the sciences, humanities, politics, business, and our culture.

The Mathematics of Poker


Bill Chen - 2006
    By the mid-1990s the old school grizzled traders had been replaced by a new breed of quantitative analysts, applying mathematics to the "art" of trading and making of it a science. A similar phenomenon is happening in poker. The grizzled "road gamblers" are being replaced by a new generation of players who have challenged many of the assumptions that underlie traditional approaches to the game. One of the most important features of this new approach is a reliance on quantitative analysis and the application of mathematics to the game. This book provides an introduction to quantitative techniques as applied to poker and to a branch of mathematics that is particularly applicable to poker, game theory, in a manner that makes seemingly difficult topics accessible to players without a strong mathematical background.

Linear Algebra Done Right


Sheldon Axler - 1995
    The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.

Statistics for People Who (Think They) Hate Statistics


Neil J. Salkind - 2000
    The book begins with an introduction to the language of statistics and then covers descriptive statistics and inferential statistics. Throughout, the author offers readers:- Difficulty Rating Index for each chapter′s material- Tips for doing and thinking about a statistical technique- Top tens for everything from the best ways to create a graph to the most effective techniques for data collection- Steps that break techniques down into a clear sequence of procedures- SPSS tips for executing each major statistical technique- Practice exercises at the end of each chapter, followed by worked out solutions.The book concludes with a statistical software sampler and a description of the best Internet sites for statistical information and data resources. Readers also have access to a website for downloading data that they can use to practice additional exercises from the book. Students and researchers will appreciate the book′s unhurried pace and thorough, friendly presentation.

Machine, Platform, Crowd: Harnessing Our Digital Future


Andrew McAfee - 2017
    Now they’ve written a guide to help readers make the most of our collective future. Machine | Platform | Crowd outlines the opportunities and challenges inherent in the science fiction technologies that have come to life in recent years, like self-driving cars and 3D printers, online platforms for renting outfits and scheduling workouts, or crowd-sourced medical research and financial instruments.

Big Data Now: Current Perspectives from O'Reilly Radar


O'Reilly Radar Team - 2011
    Mike Loukides kicked things off in June 2010 with “What is data science?” and from there we’ve pursued the various threads and themes that naturally emerged. Now, roughly a year later, we can look back over all we’ve covered and identify a number of core data areas: Data issues -- The opportunities and ambiguities of the data space are evident in discussions around privacy, the implications of data-centric industries, and the debate about the phrase “data science” itself. The application of data: products and processes – A “data product” can emerge from virtually any domain, including everything from data startups to established enterprises to media/journalism to education and research. Data science and data tools -- The tools and technologies that drive data science are of course essential to this space, but the varied techniques being applied are also key to understanding the big data arena.The business of data – Take a closer look at the actions connected to data -- the finding, organizing, and analyzing that provide organizations of all sizes with the information they need to compete.

Foundations of Statistical Natural Language Processing


Christopher D. Manning - 1999
    This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.