Masterminds of Programming: Conversations with the Creators of Major Programming Languages


Federico BiancuzziJohn Hughes - 2009
    In this unique collection, you'll learn about the processes that led to specific design decisions, including the goals they had in mind, the trade-offs they had to make, and how their experiences have left an impact on programming today. Masterminds of Programming includes individual interviews with:Adin D. Falkoff: APL Thomas E. Kurtz: BASIC Charles H. Moore: FORTH Robin Milner: ML Donald D. Chamberlin: SQL Alfred Aho, Peter Weinberger, and Brian Kernighan: AWK Charles Geschke and John Warnock: PostScript Bjarne Stroustrup: C++ Bertrand Meyer: Eiffel Brad Cox and Tom Love: Objective-C Larry Wall: Perl Simon Peyton Jones, Paul Hudak, Philip Wadler, and John Hughes: Haskell Guido van Rossum: Python Luiz Henrique de Figueiredo and Roberto Ierusalimschy: Lua James Gosling: Java Grady Booch, Ivar Jacobson, and James Rumbaugh: UML Anders Hejlsberg: Delphi inventor and lead developer of C# If you're interested in the people whose vision and hard work helped shape the computer industry, you'll find Masterminds of Programming fascinating.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design


Michael J. Hernandez - 1996
    You d be up to your neck in normal forms before you even had a chance to wade. When Michael J. Hernandez needed a database design book to teach mere mortals like himself, there were none. So he began a personal quest to learn enough to write one. And he did.Now in its Second Edition, Database Design for Mere Mortals is a miracle for today s generation of database users who don t have the background -- or the time -- to learn database design the hard way. It s also a secret pleasure for working pros who are occasionally still trying to figure out what they were taught.Drawing on 13 years of database teaching experience, Hernandez has organized database design into several key principles that are surprisingly easy to understand and remember. He illuminates those principles using examples that are generic enough to help you with virtually any application.Hernandez s goals are simple. You ll learn how to create a sound database structure as easily as possible. You ll learn how to optimize your structure for efficiency and data integrity. You ll learn how to avoid problems like missing, incorrect, mismatched, or inaccurate data. You ll learn how to relate tables together to make it possible to get whatever answers you need in the future -- even if you haven t thought of the questions yet.If -- as is often the case -- you already have a database, Hernandez explains how to analyze it -- and leverage it. You ll learn how to identify new information requirements, determine new business rules that need to be applied, and apply them.Hernandez starts with an introduction to databases, relational databases, and the idea and objectives of database design. Next, you ll walk through the key elements of the database design process: establishing table structures and relationships, assigning primary keys, setting field specifications, and setting up views. Hernandez s extensive coverage of data integrity includes a full chapter on establishing business rules and using validation tables.Hernandez surveys bad design techniques in a chapter on what not to do -- and finally, helps you identify those rare instances when it makes sense to bend or even break the conventional rules of database design.There s plenty that s new in this edition. Hernandez has gone over his text and illustrations with a fine-tooth comb to improve their already impressive clarity. You ll find updates to reflect new advances in technology, including web database applications. There are expanded and improved discussions of nulls and many-to-many relationships; multivalued fields; primary keys; and SQL data type fields. There s a new Quick Reference database design flowchart. A new glossary. New review questions at the end of every chapter.Finally, it s worth mentioning what this book isn t. It isn t a guide to any specific database platform -- so you can use it whether you re running Access, SQL Server, or Oracle, MySQL or PostgreSQL. And it isn t an SQL guide. (If that s what you need, Michael J. Hernandez has also coauthored the superb SQL Queries for Mere Mortals). But if database design is what you need to learn, this book s worth its weight in gold. Bill CamardaBill Camarda is a consultant, writer, and web/multimedia content developer. His 15 books include Special Edition Using Word 2000 and Upgrading & Fixing Networks for Dummies, Second Edition.

Programming in Scala


Martin Odersky - 2008
     Coauthored by the designer of the Scala language, this authoritative book will teach you, one step at a time, the Scala language and the ideas behind it. The book is carefully crafted to help you learn. The first few chapters will give you enough of the basics that you can already start using Scala for simple tasks. The entire book is organized so that each new concept builds on concepts that came before - a series of steps that promises to help you master the Scala language and the important ideas about programming that Scala embodies. A comprehensive tutorial and reference for Scala, this book covers the entire language and important libraries.

Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements


John R. Taylor - 1982
    It is designed as a reference for students in the physical sciences and engineering.

Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993
    

Elements of Programming


Alexander Stepanov - 2009
    And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.

Practical Object Oriented Design in Ruby


Sandi Metz - 2012
    The Web is awash in Ruby code that is now virtually impossible to change or extend. This text helps you solve that problem by using powerful real-world object-oriented design techniques, which it thoroughly explains using simple and practical Ruby examples. Sandi Metz has distilled a lifetime of conversations and presentations about object-oriented design into a set of Ruby-focused practices for crafting manageable, extensible, and pleasing code. She shows you how to build new applications that can survive success and repair existing applications that have become impossible to change. Each technique is illustrated with extended examples, all downloadable from the companion Web site, poodr.info. The first title to focus squarely on object-oriented Ruby application design, Practical Object-Oriented Design in Ruby will guide you to superior outcomes, whatever your previous Ruby experience. Novice Ruby programmers will find specific rules to live by; intermediate Ruby programmers will find valuable principles they can flexibly interpret and apply; and advanced Ruby programmers will find a common language they can use to lead development and guide their colleagues. This guide will help you Understand how object-oriented programming can help you craft Ruby code that is easier to maintain and upgrade Decide what belongs in a single Ruby class Avoid entangling objects that should be kept separate Define flexible interfaces among objects Reduce programming overhead costs with duck typing Successfully apply inheritance Build objects via composition Design cost-effective tests Solve common problems associated with poorly designed Ruby code

Jumping into C++


Alex Allain - 2013
    As a professional C++ developer and former Harvard teaching fellow, I know what you need to know to be a great C++ programmer, and I know how to teach it, one step at a time. I know where people struggle, and why, and how to make it clear. I cover every step of the programming process, including:Getting the tools you need to program and how to use them*Basic language feature like variables, loops and functions*How to go from an idea to code*A clear, understandable explanation of pointers*Strings, file IO, arrays, references*Classes and advanced class design*C++-specific programming patterns*Object oriented programming*Data structures and the standard template library (STL)Key concepts are reinforced with quizzes and over 75 practice problems.

Black Hat Python: Python Programming for Hackers and Pentesters


Justin Seitz - 2014
    But just how does the magic happen?In Black Hat Python, the latest from Justin Seitz (author of the best-selling Gray Hat Python), you'll explore the darker side of Python's capabilities writing network sniffers, manipulating packets, infecting virtual machines, creating stealthy trojans, and more. You'll learn how to:Create a trojan command-and-control using GitHubDetect sandboxing and automate common malware tasks, like keylogging and screenshottingEscalate Windows privileges with creative process controlUse offensive memory forensics tricks to retrieve password hashes and inject shellcode into a virtual machineExtend the popular Burp Suite web-hacking toolAbuse Windows COM automation to perform a man-in-the-browser attackExfiltrate data from a network most sneakilyInsider techniques and creative challenges throughout show you how to extend the hacks and how to write your own exploits.When it comes to offensive security, your ability to create powerful tools on the fly is indispensable. Learn how in Black Hat Python."

Data Structures and Algorithm Analysis in C++


Mark Allen Weiss - 1993
    Readers learn how to reduce time constraints and develop programs efficiently by analyzing the feasibility of an algorithm before it is coded. The C++ language is brought up-to-date and simplified, and the Standard Template Library is now fully incorporated throughout the text. This Third Edition also features significantly revised coverage of lists, stacks, queues, and trees and an entire chapter dedicated to amortized analysis and advanced data structures such as the Fibonacci heap. Known for its clear and friendly writing style, Data Structures and Algorithm Analysis in C++ is logically organized to cover advanced data structures topics from binary heaps to sorting to NP-completeness. Figures and examples illustrating successive stages of algorithms contribute to Weiss' careful, rigorous and in-depth analysis of each type of algorithm.

C++ Templates: The Complete Guide


David Vandevoorde - 2002
    C++ Templates: The Complete Guide provides software architects and engineers with a clear understanding of why, when, and how to use templates to build and maintain cleaner, faster, and smarter software more efficiently. C++ Templates begins with an insightful tutorial on basic concepts and language features. The remainder of the book serves as a comprehensive reference, focusing first on language details, then on a wide range of coding techniques, and finally on advanced applications for templates. Examples used throughout the book illustrate abstract concepts and demonstrate best practices. Readers learn: The exact behaviors of templates How to avoid the pitfalls associated with templates Idioms and techniques, from the basic to the previously undocumented How to reuse source code without threatening performance or safety How to increase the efficiency of C++ programs How to produce more flexible and maintainable software This practical guide shows programmers how to exploit the full power of the template features in C++.

Higher-Order Perl: Transforming Programs with Programs


Mark Jason Dominus - 2005
    However, Perl incorporates many features that have their roots in other languages such as Lisp. These advanced features are not well understood and are rarely used by most Perl programmers, but they are very powerful. They can automate tasks in everyday programming that are difficult to solve in any other way. One of the most powerful of these techniques is writing functions that manufacture or modify other functions. For example, instead of writing ten similar functions, a programmer can write a general pattern or framework that can then create the functions as needed according to the pattern. For several years Mark Jason Dominus has worked to apply functional programming techniques to Perl. Now Mark brings these flexible programming methods that he has successfully taught in numerous tutorials and training sessions to a wider audience.• Introduces powerful programming methods—new to most Perl programmers—that were previously the domain of computer scientists• Gradually builds up confidence by describing techniques of progressive sophistication• Shows how to improve everyday programs and includes numerous engaging code examples to illustrate the methods

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.