The Mythical Man-Month: Essays on Software Engineering


Frederick P. Brooks Jr. - 1975
    With a blend of software engineering facts and thought-provoking opinions, Fred Brooks offers insight for anyone managing complex projects. These essays draw from his experience as project manager for the IBM System/360 computer family and then for OS/360, its massive software system. Now, 45 years after the initial publication of his book, Brooks has revisited his original ideas and added new thoughts and advice, both for readers already familiar with his work and for readers discovering it for the first time.The added chapters contain (1) a crisp condensation of all the propositions asserted in the original book, including Brooks' central argument in The Mythical Man-Month: that large programming projects suffer management problems different from small ones due to the division of labor; that the conceptual integrity of the product is therefore critical; and that it is difficult but possible to achieve this unity; (2) Brooks' view of these propositions a generation later; (3) a reprint of his classic 1986 paper "No Silver Bullet"; and (4) today's thoughts on the 1986 assertion, "There will be no silver bullet within ten years."

Algorithms in a Nutshell


George T. Heineman - 2008
    Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

Concepts, Techniques, and Models of Computer Programming


Peter Van Roy - 2004
    The book focuses on techniques of lasting value and explains them precisely in terms of a simple abstract machine. The book presents all major programming paradigms in a uniform framework that shows their deep relationships and how and where to use them together.After an introduction to programming concepts, the book presents both well-known and lesser-known computation models ("programming paradigms"). Each model has its own set of techniques and each is included on the basis of its usefulness in practice. The general models include declarative programming, declarative concurrency, message-passing concurrency, explicit state, object-oriented programming, shared-state concurrency, and relational programming. Specialized models include graphical user interface programming, distributed programming, and constraint programming. Each model is based on its kernel language—a simple core language that consists of a small number of programmer- significant elements. The kernel languages are introduced progressively, adding concepts one by one, thus showing the deep relationships between different models. The kernel languages are defined precisely in terms of a simple abstract machine. Because a wide variety of languages and programming paradigms can be modeled by a small set of closely related kernel languages, this approach allows programmer and student to grasp the underlying unity of programming. The book has many program fragments and exercises, all of which can be run on the Mozart Programming System, an Open Source software package that features an interactive incremental development environment.

Computer Architecture: A Quantitative Approach


John L. Hennessy - 2006
    Today, Intel and other semiconductor firms are abandoning the single fast processor model in favor of multi-core microprocessors--chips that combine two or more processors in a single package. In the fourth edition of "Computer Architecture," the authors focus on this historic shift, increasing their coverage of multiprocessors and exploring the most effective ways of achieving parallelism as the key to unlocking the power of multiple processor architectures. Additionally, the new edition has expanded and updated coverage of design topics beyond processor performance, including power, reliability, availability, and dependability. CD System Requirements"PDF Viewer"The CD material includes PDF documents that you can read with a PDF viewer such as Adobe, Acrobat or Adobe Reader. Recent versions of Adobe Reader for some platforms are included on the CD. "HTML Browser"The navigation framework on this CD is delivered in HTML and JavaScript. It is recommended that you install the latest version of your favorite HTML browser to view this CD. The content has been verified under Windows XP with the following browsers: Internet Explorer 6.0, Firefox 1.5; under Mac OS X (Panther) with the following browsers: Internet Explorer 5.2, Firefox 1.0.6, Safari 1.3; and under Mandriva Linux 2006 with the following browsers: Firefox 1.0.6, Konqueror 3.4.2, Mozilla 1.7.11. The content is designed to be viewed in a browser window that is at least 720 pixels wide. You may find the content does not display well if your display is not set to at least 1024x768 pixel resolution. "Operating System"This CD can be used under any operating system that includes an HTML browser and a PDF viewer. This includes Windows, Mac OS, and most Linux and Unix systems. Increased coverage on achieving parallelism with multiprocessors. Case studies of latest technology from industry including the Sun Niagara Multiprocessor, AMD Opteron, and Pentium 4. Three review appendices, included in the printed volume, review the basic and intermediate principles the main text relies upon. Eight reference appendices, collected on the CD, cover a range of topics including specific architectures, embedded systems, application specific processors--some guest authored by subject experts.

The Hundred-Page Machine Learning Book


Andriy Burkov - 2019
    During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Problem Solving with C++: The Object of Programming


Walter J. Savitch - 1995
    It introduces the use of classes; shows how to write ADTs that maximize the perfomance of C++ in creating reusable code; and provides coverage of all important OO functions, including inheritance, polymorphism and encapsulation.

Combinatorial Optimization: Algorithms and Complexity


Christos H. Papadimitriou - 1998
    All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.

Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation


Jez Humble - 2010
    This groundbreaking new book sets out the principles and technical practices that enable rapid, incremental delivery of high quality, valuable new functionality to users. Through automation of the build, deployment, and testing process, and improved collaboration between developers, testers, and operations, delivery teams can get changes released in a matter of hours-- sometimes even minutes-no matter what the size of a project or the complexity of its code base. Jez Humble and David Farley begin by presenting the foundations of a rapid, reliable, low-risk delivery process. Next, they introduce the "deployment pipeline," an automated process for managing all changes, from check-in to release. Finally, they discuss the "ecosystem" needed to support continuous delivery, from infrastructure, data and configuration management to governance. The authors introduce state-of-the-art techniques, including automated infrastructure management and data migration, and the use of virtualization. For each, they review key issues, identify best practices, and demonstrate how to mitigate risks. Coverage includes - Automating all facets of building, integrating, testing, and deploying software - Implementing deployment pipelines at team and organizational levels - Improving collaboration between developers, testers, and operations - Developing features incrementally on large and distributed teams - Implementing an effective configuration management strategy - Automating acceptance testing, from analysis to implementation - Testing capacity and other non-functional requirements - Implementing continuous deployment and zero-downtime releases - Managing infrastructure, data, components and dependencies - Navigating risk management, compliance, and auditing Whether you're a developer, systems administrator, tester, or manager, this book will help your organization move from idea to release faster than ever--so you can deliver value to your business rapidly and reliably.

Joel on Software


Joel Spolsky - 2004
    For years, Joel Spolsky has done exactly this at www.joelonsoftware.com. Now, for the first time, you can own a collection of the most important essays from his site in one book, with exclusive commentary and new insights from joel.

C# 5.0 in a Nutshell: The Definitive Reference


Joseph Albahari - 2012
    Uniquely organized around concepts and use cases, this updated fifth edition features a reorganized section on concurrency, threading, and parallel programming—including in-depth coverage of C# 5.0’s new asynchronous functions.Shaped by more than 20 expert reviewers, including Microsoft’s Eric Lippert, Stephen Toub, Chris Burrows, and Jon Skeet, this book has all you need to stay on track with C# 5.0. It’s widely known as the definitive reference on the language.Get up to speed on C# language basics, including syntax, types, and variablesExplore advanced topics such as unsafe code and type varianceDig deep into LINQ via three chapters dedicated to the topicLearn about code contracts, dynamic programming, and parallel programmingWork with .NET features, including reflection, assemblies, memory management, security, I/O, XML, collections, networking, and native interoperability"C# 5.0 in a Nutshell is one of the few books I keep on my desk as a quick reference." —Scott Guthrie, Microsoft"Whether you’re a novice programmer or an expert who wants to improve your knowledge of modern asynchronous programming techniques, this book has the information you need to get the job done in C#." —Eric Lippert, Microsoft

Mastering Algorithms with C


Kyle Loudon - 1999
    Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms