Book picks similar to
Comprehensive Introduction to Differential Geometry, Complete Five-Volume Set by Michael Spivak
mathematics
educational
mat
learn-physics
But How Do It Know? - The Basic Principles of Computers for Everyone
J. Clark Scott - 2009
Its humorous title begins with the punch line of a classic joke about someone who is baffled by technology. It was written by a 40-year computer veteran who wants to take the mystery out of computers and allow everyone to gain a true understanding of exactly what computers are, and also what they are not. Years of writing, diagramming, piloting and editing have culminated in one easy to read volume that contains all of the basic principles of computers written so that everyone can understand them. There used to be only two types of book that delved into the insides of computers. The simple ones point out the major parts and describe their functions in broad general terms. Computer Science textbooks eventually tell the whole story, but along the way, they include every detail that an engineer could conceivably ever need to know. Like Momma Bear's porridge, But How Do It Know? is just right, but it is much more than just a happy medium. For the first time, this book thoroughly demonstrates each of the basic principles that have been used in every computer ever built, while at the same time showing the integral role that codes play in everything that computers are able to do. It cuts through all of the electronics and mathematics, and gets right to practical matters. Here is a simple part, see what it does. Connect a few of these together and you get a new part that does another simple thing. After just a few iterations of connecting up simple parts - voilà! - it's a computer. And it is much simpler than anyone ever imagined. But How Do It Know? really explains how computers work. They are far simpler than anyone has ever permitted you to believe. It contains everything you need to know, and nothing you don't need to know. No technical background of any kind is required. The basic principles of computers have not changed one iota since they were invented in the mid 20th century. "Since the day I learned how computers work, it always felt like I knew a giant secret, but couldn't tell anyone," says the author. Now he's taken the time to explain it in such a manner that anyone can have that same moment of enlightenment and thereafter see computers in an entirely new light.
Arithmetic
Paul Lockhart - 2017
But from the perspective of mathematics, groupings of ten are arbitrary, and can have serious shortcomings. Twelve would be better for divisibility, and eight is smaller and well suited to repeated halving. Grouping by two, as in binary code, has turned out to have its own remarkable advantages.Paul Lockhart reveals arithmetic not as the rote manipulation of numbers--a practical if mundane branch of knowledge best suited for balancing a checkbook or filling out tax forms--but as a set of ideas that exhibit the fascinating and sometimes surprising behaviors usually reserved for higher branches of mathematics. The essence of arithmetic is the skillful arrangement of numerical information for ease of communication and comparison, an elegant intellectual craft that arises from our desire to count, add to, take away from, divide up, and multiply quantities of important things. Over centuries, humans devised a variety of strategies for representing and using numerical information, from beads and tally marks to adding machines and computers. Lockhart explores the philosophical and aesthetic nature of counting and of different number systems, both Western and non-Western, weighing the pluses and minuses of each.A passionate, entertaining survey of foundational ideas and methods, Arithmetic invites readers to experience the profound and simple beauty of its subject through the eyes of a modern research mathematician.
The Story of Mathematics
Anne Rooney - 2008
Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.
The Indisputable Existence of Santa Claus: The Mathematics of Christmas
Hannah Fry - 2016
And proves once and for all that maths isn't just for old men with white hair and beards who associate with elves.Maths has never been merrier.
The Principle of Relativity (Books on Physics)
Albert Einstein - 1952
Lorentz.
Statistics in Plain English
Timothy C. Urdan - 2001
Each self-contained chapter consists of three sections. The first describes the statistic, including how it is used and what information it provides. The second section reviews how it works, how to calculate the formula, the strengths and weaknesses of the technique, and the conditions needed for its use. The final section provides examples that use and interpret the statistic. A glossary of terms and symbols is also included.New features in the second edition include:an interactive CD with PowerPoint presentations and problems for each chapter including an overview of the problem's solution; new chapters on basic research concepts including sampling, definitions of different types of variables, and basic research designs and one on nonparametric statistics; more graphs and more precise descriptions of each statistic; and a discussion of confidence intervals.This brief paperback is an ideal supplement for statistics, research methods, courses that use statistics, or as a reference tool to refresh one's memory about key concepts. The actual research examples are from psychology, education, and other social and behavioral sciences.Materials formerly available with this book on CD-ROM are now available for download from our website www.psypress.com. Go to the book's page and look for the 'Download' link in the right-hand column.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Painless Algebra
Lynette Long - 1998
The author defines all terms, points out potential pitfalls in algebraic calculation, and makes problem solving a fun activity. New in this edition are painless approaches to understanding and graphing linear equations, solving systems of linear inequalities, and graphing quadratic equations. Barron’s popular Painless Series of study guides for middle school and high school students offer a lighthearted, often humorous approach to their subjects, transforming details that might once have seemed boring or difficult into a series of interesting and mentally challenging ideas. Most titles in the series feature many fun-to-solve “Brain Tickler” problems with answers at the end of each chapter.
A Short Account of the History of Mathematics
W.W. Rouse Ball - 1900
From the early Greek influences to the Middle Ages and the Renaissance to the end of the 19th century, trace the fascinating foundation of mathematics as it developed through the ages. Aristotle, Galileo, Kepler, Newton: you know the names. Now here's what they really did, and the effect their discoveries had on our culture, all explained in a way the layperson can understand. Begin with the basis of arithmetic (Plato and the introduction of geometry), and discover why the use of Arabic numerals was critical to the development of both commerce and science. The development of calculus made space travel a reality, while the abacus prefigured the computer. The greats examined in depth include Leonardo da Vinci, a brilliant mathematician as well as artist; Pascal, who laid out the theory of probabilities; and Fermat, whose intriguing theory has only recently been solved.
Statistical Mechanics
R.K. Pathria - 1972
Highly recommended for graduate-level libraries.' ChoiceThis highly successful text, which first appeared in the year 1972 and has continued to be popular ever since, has now been brought up-to-date by incorporating the remarkable developments in the field of 'phase transitions and critical phenomena' that took place over the intervening years. This has been done by adding three new chapters (comprising over 150 pages and containing over 60 homework problems) which should enhance the usefulness of the book for both students and instructors. We trust that this classic text, which has been widely acclaimed for its clean derivations and clear explanations, will continue to provide further generations of students a sound training in the methods of statistical physics.
A Strange Wilderness: The Lives of the Great Mathematicians
Amir D. Aczel - 2011
As exciting as any action/adventure novel, this is actually the story of incredible individuals and engrossing tales behind the most profound, enduring mathematical theorems.Archimedes famously ran naked through the streets shouting, “Eureka, eureka!” after finding a method for measuring the volume of an irregular-shaped object. René Descartes was not only a great French mathematician, philosopher, physicist, and natural scientist; he was also an expert swordsman who traveled with European armies from town to town, dressed in green taffeta and accompanied by a valet. Georg Cantor grappled with mental illness as he explored the highly counterintuitive, bizarre properties of infinite sets and numbers. Emmy Noether struggled to find employment as she laid the mathematical groundwork for modern theoretical physics. And Alexander Grothendieck taught himself mathematics while interned in Nazi concentration camps, only to disappear into the Pyrenees at the zenith of his career.These are just a few stories recounted in this absorbing narrative. In probing the lives of the preeminent mathematicians in history, a Strange Wilderness will leave you entertained and enlightened, with a newfound appreciation of the tenacity, complexity, and brilliance of the mathematical genius.
The Vince Flynn Reader's Companion: A Collection of Excerpts
Vince Flynn - 2012
In this free collection of excerpts, enjoy a taste of all of Vince Flynn’s thrillers starring CIA superagent Mitch Rapp.
Games and Decisions: Introduction and Critical Survey
R. Duncan Luce - 1957
Clear, comprehensive coverage of utility theory, 2-person zero-sum games, 2-person non-zero-sum games, n-person games, individual and group decision-making, more. Bibliography.
The Joy of Game Theory: An Introduction to Strategic Thinking
Presh Talwalkar - 2013
Articles from Game Theory Tuesdays have been referenced in The Freakonomics Blog, Yahoo Finance, and CNN.com. The second edition includes many streamlined explanations and incorporates suggestions from readers of the first edition. Game theory is the study of interactive decision making--that is, in situations where each person's action affects the outcome for the whole group. Game theory is a beautiful subject and this book will teach you how to understand the theory and practically implement solutions through a series of stories and the aid of over 30 illustrations. This book has two primary objectives. (1) To help you recognize strategic games, like the Prisoner's Dilemma, Bertrand Duopoly, Hotelling's Game, the Game of Chicken, and Mutually Assured Destruction. (2) To show you how to make better decisions and change the game, a powerful concept that can transform no-win situations into mutually beneficial outcomes. You'll learn how to negotiate better by making your threats credible, sometimes limiting options or burning bridges, and thinking about new ways to create better outcomes. As these goals indicate, game theory is about more than board games and gambling. It all seems so simple, and yet that definition belies the complexity of game theory. While it may only take seconds to get a sense of game theory, it takes a lifetime to appreciate and master it. This book will get you started.
The Fabulous Fibonacci Numbers
Alfred S. Posamentier - 2007
In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.