E=mc²: A Biography of the World's Most Famous Equation


David Bodanis - 2000
    Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee

Einstein and the Quantum: The Quest of the Valiant Swabian


A. Douglas Stone - 2013
    Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light--the core of what we now know as quantum theory--than he did about relativity.A compelling blend of physics, biography, and the history of science, "Einstein and the Quantum" shares the untold story of how Einstein--not Max Planck or Niels Bohr--was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrodinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.A book unlike any other, "Einstein and the Quantum" offers a completely new perspective on the scientific achievements of the greatest intellect of the twentieth century, showing how Einstein's contributions to the development of quantum theory are more significant, perhaps, than even his legendary work on relativity.

Physics for Scientists and Engineers, Volume 1


Raymond A. Serway - 2003
    However, rather than resting on that reputation, the new edition of this text marks a significant advance in the already excellent quality of the book. While preserving concise language, state of the art educational pedagogy, and top-notch worked examples, the Eighth Edition features a unified art design as well as streamlined and carefully reorganized problem sets that enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. Likewise, PHYSICS FOR SCIENTISTS AND ENGINEERS, will continue to accompany Enhanced WebAssign in the most integrated text-technology offering available today. In an environment where new Physics texts have appeared with challenging and novel means to teach students, this book exceeds all modern standards of education from the most solid foundation in the Physics market today.

Structures: Or Why Things Don't Fall Down


J.E. Gordon - 1978
    Gordon strips engineering of its confusing technical terms, communicating its founding principles in accessible, witty prose.For anyone who has ever wondered why suspension bridges don't collapse under eight lanes of traffic, how dams hold back--or give way under--thousands of gallons of water, or what principles guide the design of a skyscraper, a bias-cut dress, or a kangaroo, this book will ease your anxiety and answer your questions.Structures: Or Why Things Don't Fall Down is an informal explanation of the basic forces that hold together the ordinary and essential things of this world--from buildings and bodies to flying aircraft and eggshells. In a style that combines wit, a masterful command of his subject, and an encyclopedic range of reference, Gordon includes such chapters as "How to Design a Worm" and "The Advantage of Being a Beam," offering humorous insights in human and natural creation.Architects and engineers will appreciate the clear and cogent explanations of the concepts of stress, shear, torsion, fracture, and compression. If you're building a house, a sailboat, or a catapult, here is a handy tool for understanding the mechanics of joinery, floors, ceilings, hulls, masts--or flying buttresses.Without jargon or oversimplification, Structures opens up the marvels of technology to anyone interested in the foundations of our everyday lives.

Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time


Marcia Bartusiak - 2000
    Their quest: to be the first to detect gravitational waves, infinitesimal quakes that stretch and compress space-time and could add a brand-new dimension to our universal knowledge-allowing us to hear a sun going supernova, black holes colliding, and perhaps one day, the remnant rumble of the Big Bang itself...

The Reluctant Mr. Darwin: An Intimate Portrait of Charles Darwin and the Making of His Theory of Evolution


David Quammen - 2006
    Evolution, during the early nineteenth century, was an idea in the air. Other thinkers had suggested it, but no one had proposed a cogent explanation for how evolution occurs. Then, in September 1838, a young Englishman named Charles Darwin hit upon the idea that "natural selection" among competing individuals would lead to wondrous adaptations and species diversity. Twenty-one years passed between that epiphany and publication of "On the Origin of Species," The human drama and scientific basis of Darwin's twenty-one-year delay constitute a fascinating, tangled tale that elucidates the character of a cautious naturalist who initiated an intellectual revolution. "The Reluctant Mr. Darwin" is a book for everyone who has ever wondered about who this man was and what he said. Drawing from Darwin's secret "transmutation" notebooks and his personal letters, David Quammen has sketched a vivid life portrait of the man whose work never ceases to be controversial.

The Physics of the Buffyverse


Jennifer Ouellette - 2006
    The weird and wonderful world of the Buffyversewhere the melding of magic and science is an everyday occurrenceprovides a fantastical jumping-off point for looking at complex theories of biology, chemistry, and theoretical physics. From surreal vampires, demons, and interdimensional portals to energy conservation, black holes, and string theory, The Physics of the Buffyverse is serious (and palatable) science for the rest of us. "

Is God a Mathematician?


Mario Livio - 2009
    Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.

Particle Physics For Non Physicists: A Tour Of The Microcosmos


Steven Pollock - 2003
    And you'll also learn the "rules of the game" - the forces that drive those particles and the ways in which they interact - that underlie the workings of the universe.The lectures have been designed to be enriching for everyone, regardless of scientific background or mathematical ability. Virtually all you'll need as you enter this fascinating world are your curiosity, common sense, and, as Professor Pollock notes, "an open mind for the occasional quantum weirdness." As you move through the lectures, you'll also gain a knowledge of how those particles fit into perhaps the greatest scientific theory of all time: the Standard Model of particle physics; a grasp of key terms like "gauge symmetry," "quantum chromodynamics," and "unified quantum field Theory;" and an appreciation of how particle physics fits in with other branches of physics - including cosmology and quantum mechanics - to create our overall understanding of nature.

Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

The Road since Structure: Philosophical Essays, 1970-1993, with an Autobiographical Interview


Thomas S. Kuhn - 1993
    The Road Since Structure, assembled with Kuhn's input before his death in 1996, follows the development of his thought through the later years of his life: collected here are several essays extending and rethinking the perspectives of Structure as well as an extensive, fascinating autobiographical interview in which Kuhn discusses the course of his life and philosophy.

Quantum Enigma: Physics Encounters Consciousness


Bruce Rosenblum - 2006
    Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.

I Think, Therefore I Laugh: The Flip Side of Philosophy


John Allen Paulos - 1985
    Paulos uses jokes, stories, parables, and anecdotes to elucidate difficult concepts, in this case, some of the fundamental problems in modern philosophy.

Black Holes and Warped Spacetime


William J. Kaufmann III - 1979
    They infinitely warp space and time, allowing nothing to escape: not matter, not even light. They are stellar corpses that have crushed themselves into oblivion, seemingly suspending the traditional laws of physics. The Big bang may have peppered the universe with primordial black holes, as small as protons but as massive as mountains. The universe itself may be disappearing into the final black hole. Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime. The author's engrossing, non-technical explanations are enhanced by numerous illustrations.

Particle Physics: A Very Short Introduction


Frank Close - 2004
    The book begins with a guide to what matter is made up of and how it evolved, and goes on to describe the fascinating and cutting-edge techniques used to study it. The author discusses particles such as quarks, electrons, and the neutrino, and exotic matter and antimatter. He also investigates the forces of nature, accelerators and detectors, and the intriguing future of particle physics. This book is essential reading for general readers interested in popular science, students of physics, and scientists at all levels.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.