How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

Symmetry: The Ordering Principle


David G. Wade - 2006
    In this little book Welsh writer and artist David Wade paints a picture of one of the most elusive and pervasive concepts known to man.

Mathematics: A Very Short Introduction


Timothy Gowers - 2002
    The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understandingof paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questionsabout the mathematical community (such as Is it true that mathematicians burn out at the age of 25?) It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundredsof key topics, from philosophy to Freud, quantum theory to Islam.

Physics for Scientists and Engineers, Volume 1


Raymond A. Serway - 2003
    However, rather than resting on that reputation, the new edition of this text marks a significant advance in the already excellent quality of the book. While preserving concise language, state of the art educational pedagogy, and top-notch worked examples, the Eighth Edition features a unified art design as well as streamlined and carefully reorganized problem sets that enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. Likewise, PHYSICS FOR SCIENTISTS AND ENGINEERS, will continue to accompany Enhanced WebAssign in the most integrated text-technology offering available today. In an environment where new Physics texts have appeared with challenging and novel means to teach students, this book exceeds all modern standards of education from the most solid foundation in the Physics market today.

Introductory Functional Analysis with Applications


Erwin Kreyszig - 1978
    With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.Currently available in the Series: Emil ArtinGeometnc Algebra R. W. CarterSimple Groups Of Lie Type Richard CourantDifferential and Integrai Calculus. Volume I Richard CourantDifferential and Integral Calculus. Volume II Richard Courant & D. HilbertMethods of Mathematical Physics, Volume I Richard Courant & D. HilbertMethods of Mathematical Physics. Volume II Harold M. S. CoxeterIntroduction to Modern Geometry. Second Edition Charles W. Curtis, Irving ReinerRepresentation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartzunear Operators. Part One. General Theory Nelson Dunford. Jacob T. SchwartzLinear Operators, Part Two. Spectral Theory--Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. SchwartzLinear Operators. Part Three. Spectral Operators Peter HenriciApplied and Computational Complex Analysis. Volume I--Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang WuA Course in Modern Algebra Harry HochstadtIntegral Equations Erwin KreyszigIntroductory Functional Analysis with Applications P. M. PrenterSplines and Variational Methods C. L. SiegelTopics in Complex Function Theory. Volume I --Elliptic Functions and Uniformizatton Theory C. L. SiegelTopics in Complex Function Theory. Volume II --Automorphic and Abelian Integrals C. L. SiegelTopics In Complex Function Theory. Volume III --Abelian Functions & Modular Functions of Several Variables J. J. StokerDifferential Geometry

The Calculus Gallery: Masterpieces from Newton to Lebesgue


William Dunham - 2004
    This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. Students of literature read Shakespeare; students of music listen to Bach, he writes. But this tradition of studying the major works of the masters is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation.Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original category theorem (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable.Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.

Tell Me The Odds: A 15 Page Introduction To Bayes Theorem


Scott Hartshorn - 2017
    Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.

The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots


Colin Conrad Adams - 1994
    The study of knots has led to important applications in DNA research and the synthesis of new molecules, and has had a significant impact on statistical mechanics and quantum field theory. Colin Adams’s The Knot Book is the first book to make cutting-edge research in knot theory accessible to a non-specialist audience. Starting with the simplest knots, Adams guides readers through increasingly more intricate twists and turns of knot theory, exploring problems and theorems mathematicians can now solve, as well as those that remain open. He also explores how knot theory is providing important insights in biology, chemistry, physics, and other fields. The new paperback edition has been updated to include the latest research results, and includes hundreds of illustrations of knots, as well as worked examples, exercises and problems. With a simple piece of string, an elementary mathematical background, and The Knot Book, anyone can start learning about some of the most advanced ideas in contemporary mathematics.

The Mathematical Recreations of Lewis Carroll: Pillow Problems and a Tangled Tale


Lewis Carroll - 1893
    L. Dodgson) have now been reprinted in their entirety for the pleasure of modern enthusiasts of mathematical puzzles. Written by the 19th-century mathematician who gave us Alice in Wonderland and Through the Looking Glass, they contain an unusual combination of wit and mathematical intricacy that will test your mathematical ingenuity and provide hours of stimulating entertainment.Pillow-Problems is one of the rarest of all Lewis Carroll's works. It contains 72 mathematical posers ranging from those that can be solved by arithmetic, simple algebra, or plane geometry, to those that require more advanced algebra, trigonometry, algebraical geometry, differential calculus, and transcendental probabilities. Both numerical answers and fully worked out solutions are given, each in a separate section so that you can test your methods of problem-solving even after you have looked up the answer to a problem.In A Tangled Tale, Carroll embodies some of his most perplexing mathematical puzzles in the ten knots or chapters of a delightful story that has all the charm and wit of his better-known works. The Tale was originally printed as a monthly magazine serial, and many readers sent in solutions to the problems that were posed in it. In the long Appendix to The Tale, which contains the answers and solutions to the problems, Carroll uses the answers sent in by readers as the basis for illuminating and entertaining discussions of the many wrong ways in which the problems can be attacked, as well as the right ways.

Euler's Gem: The Polyhedron Formula and the Birth of Topology


David S. Richeson - 2008
    Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea.From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Algebra II For Dummies


Mary Jane Sterling - 2004
    To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!

Who Is Fourier? a Mathematical Adventure


Transnational College of Lex - 1995
    This is done in a way that is not only easy to understand, but is actually fun! Professors and engineers, with high school and college students following closely, comprise the largest percentage of our readers. It is a must-have for anyone interested in music, mathematics, physics, engineering, or complex science. Dr. Yoichiro Nambu, 2008 Nobel Prize Winner in Physics, served as a senior adviser to the English version of Who is Fourier? A Mathematical Adventure.