A Beautiful Question: Finding Nature's Deep Design


Frank Wilczek - 2015
    Wilczek’s groundbreaking work in quantum physics was inspired by his intuition to look for a deeper order of beauty in nature. In fact, every major advance in his career came from this intuition: to assume that the universe embodies beautiful forms, forms whose hallmarks are symmetry—harmony, balance, proportion—and economy. There are other meanings of “beauty,” but this is the deep logic of the universe—and it is no accident that it is also at the heart of what we find aesthetically pleasing and inspiring.Wilczek is hardly alone among great scientists in charting his course using beauty as his compass. As he reveals in A Beautiful Question, this has been the heart of scientific pursuit from Pythagoras, the ancient Greek who was the first to argue that “all things are number,” to Galileo, Newton, Maxwell, Einstein, and into the deep waters of twentiethcentury physics. Though the ancients weren’t right about everything, their ardent belief in the music of the spheres has proved true down to the quantum level. Indeed, Wilczek explores just how intertwined our ideas about beauty and art are with our scientific understanding of the cosmos.Wilczek brings us right to the edge of knowledge today, where the core insights of even the craziest quantum ideas apply principles we all understand. The equations for atoms and light are almost literally the same equations that govern musical instruments and sound; the subatomic particles that are responsible for most of our mass are determined by simple geometric symmetries. The universe itself, suggests Wilczek, seems to want to embody beautiful and elegant forms. Perhaps this force is the pure elegance of numbers, perhaps the work of a higher being, or somewhere between. Either way, we don’t depart from the infinite and infinitesimal after all; we’re profoundly connected to them, and we connect them. When we find that our sense of beauty is realized in the physical world, we are discovering something about the world, but also something about ourselves.Gorgeously illustrated, A Beautiful Question is a mind-shifting book that braids the age-old quest for beauty and the age-old quest for truth into a thrilling synthesis. It is a dazzling and important work from one of our best thinkers, whose humor and infectious sense of wonder animate every page. Yes: The world is a work of art, and its deepest truths are ones we already feel, as if they were somehow written in our souls.

The Twenty Dollar Bill


Elmore Hammes - 2007
    No bombastic explosions, steamy sex scenes, political intrigue or cosmic encounters. Just slices of life from the people you walk by every day - glimpses into how ordinary people interact, how they think, how they feel and how they love. A contemporary novel exploring every day interactions and relationships.

Young Einstein: From the Doxerl Affair to the Miracle Year


L. Randles Lagerstrom - 2013
    In 1905 an unknown 26-year-old clerk at the Swiss Patent Office, who had supposedly failed math in school, burst on to the scientific scene and swept away the hidebound theories of the day. The clerk, Albert Einstein, introduced a new and unexpected understanding of the universe and launched the two great revolutions of twentieth-century physics, relativity and quantum mechanics. The obscure origin and wide-ranging brilliance of the work recalled Isaac Newton’s “annus mirabilis” (miracle year) of 1666, when as a 23-year-old seeking safety at his family manor from an outbreak of the plague, he invented calculus and laid the foundations for his theory of gravity. Like Newton, Einstein quickly became a scientific icon--the image of genius and, according to Time magazine, the Person of the Century.The actual story is much more interesting. Einstein himself once remarked that “science as something coming into being ... is just as subjectively, psychologically conditioned as are all other human endeavors.” In this profile, the historian of science L. Randles Lagerstrom takes you behind the myth and into the very human life of the young Einstein. From family rifts and girlfriend troubles to financial hardships and jobless anxieties, Einstein’s early years were typical of many young persons. And yet in the midst of it all, he also saw his way through to profound scientific insights. Drawing upon correspondence from Einstein, his family, and his friends, Lagerstrom brings to life the young Einstein and enables the reader to come away with a fuller and more appreciative understanding of Einstein the person and the origins of his revolutionary ideas.About the cover image: While walking to work six days a week as a patent clerk in Bern, Switzerland, Einstein would pass by the famous "Zytglogge" tower and its astronomical clocks. The daily juxtaposition was fitting, as the relative nature of time and clock synchronization would be one of his revolutionary discoveries in the miracle year of 1905.

I Am a Strange Loop


Douglas R. Hofstadter - 2007
    Deep down, a human brain is a chaotic seething soup of particles, on a higher level it is a jungle of neurons, and on a yet higher level it is a network of abstractions that we call "symbols." The most central and complex symbol in your brain or mine is the one we both call "I." The "I" is the nexus in our brain where the levels feed back into each other and flip causality upside down, with symbols seeming to have free will and to have gained the paradoxical ability to push particles around, rather than the reverse. For each human being, this "I" seems to be the realest thing in the world. But how can such a mysterious abstraction be real--or is our "I" merely a convenient fiction? Does an "I" exert genuine power over the particles in our brain, or is it helplessly pushed around by the all-powerful laws of physics? These are the mysteries tackled in I Am a Strange Loop, Douglas R. Hofstadter's first book-length journey into philosophy since Godel, Escher, Bach. Compulsively readable and endlessly thought-provoking, this is the book Hofstadter's many readers have long been waiting for.

Planck: Driven by Vision, Broken by War


Brandon R. Brown - 2015
    But Planck's story is not well known, especially in the United States. A German physicist working during the firsthalf of the twentieth century, his library, personal journals, notebooks, and letters were all destroyed with his home in World War II. What remains, other than his contributions to science, are handwritten letters in German shorthand, and tributes from other scientists of the time.In Planck: Driven by Vision, Broken by War, Brandon R. Brown interweaves the voices and writings of Planck, his family, and his contemporaries--with many passages appearing in English for the first time--to create a portrait of a groundbreaking physicist working in the midst of war. Planck spentmuch of his adult life grappling with the identity crisis of being an influential German with ideas that ran counter to his government. During the later part of his life, he survived bombings and battlefields, surgeries and blood transfusions, all the while performing his influential work amidst aviolent and crumbling Nazi bureaucracy. When his son was accused of treason, Planck tried to use his standing as a German national treasure, and wrote directly to Hitler to spare his son's life. Brown tells the story of Planck's friendship with the far more outspoken Albert Einstein, and shows howhis work fits within the explosion of technology and science that occurred during his life.This story of a brilliant man living in a dangerous time gives Max Planck his rightful place in the history of science, and it shows how war-torn Germany deeply impacted his life and work.

The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics


Clifford A. Pickover - 2009
    Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.

Einstein's Miraculous Year


John J. Stachel - 1998
    In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.

Struck by Lightning: The Curious World of Probabilities


Jeffrey S. Rosenthal - 2005
    Human beings have long been both fascinated and appalled by randomness. On the one hand, we love the thrill of a surprise party, the unpredictability of a budding romance, or the freedom of not knowing what tomorrow will bring. We are inexplicably delighted by strange coincidences and striking similarities. But we also hate uncertainty's dark side. From cancer to SARS, diseases strike with no apparent pattern. Terrorists attack, airplanes crash, bridges collapse, and we never know if we'll be that one in a million statistic. We are all constantly faced with situations and choices that involve randomness and uncertainty. A basic understanding of the rules of probability theory, applied to real-life circumstances, can help us to make sense of these situations, to avoid unnecessary fear, to seize the opportunities that randomness presents to us, and to actually enjoy the uncertainties we face. The reality is that when it comes to randomness, you can run, but you can't hide. So many aspects of our lives are governed by events that are simply not in our control. In this entertaining yet sophisticated look at the world of probabilities, author Jeffrey Rosenthal--an improbably talented math professor--explains the mechanics of randomness and teaches us how to develop an informed perspective on probability.

Schaum's Outline of Calculus


Frank Ayres Jr. - 1990
    They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..

The Great Equations: Breakthroughs in Science from Pythagoras to Heisenberg


Robert P. Crease - 2008
    Crease tells the stories behind ten of the greatest equations in human history. Was Nobel laureate Richard Feynman really joking when he called Maxwell's electromagnetic equations the most significant event of the nineteenth century? How did Newton's law of gravitation influence young revolutionaries? Why has Euler's formula been called "God's equation," and why did a mysterious ecoterrorist make it his calling card? What role do betrayal, insanity, and suicide play in the second law of thermodynamics?The Great Equations tells the stories of how these equations were discovered, revealing the personal struggles of their ingenious originators. From "1 + 1 = 2" to Heisenberg's uncertainty principle, Crease locates these equations in the panoramic sweep of Western history, showing how they are as integral to their time and place of creation as are great works of art.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

The Man Who Knew Infinity: A Life of the Genius Ramanujan


Robert Kanigel - 1991
    Hardy, in the years before World War I. Through their eyes the reader is taken on a journey through numbers theory. Ramanujan would regularly telescope 12 steps of logic into two - the effect is said to be like Dr Watson in the train of some argument by Sherlock Holmes. The language of symbols and infinitely large (and small) regions of mathematics should be rendered with clarity for the general reader.

Survival of the Sickest: A Medical Maverick Discovers Why We Need Disease


Sharon Moalem - 2007
    Sharon Moalem turns our current understanding of illness on its head and challenges us to fundamentally change the way we think about our bodies, our health, and our relationship to just about every other living thing on earth, from plants and animals to insects and bacteria.Through a fresh and engaging examination of our evolutionary history, Dr. Moalem reveals how many of the conditions that are diseases today actually gave our ancestors a leg up in the survival sweepstakes. When the option is a long life with a disease or a short one without it, evolution opts for disease almost every time.Everything from the climate our ancestors lived in to the crops they planted and ate to their beverage of choice can be seen in our genetic inheritance. But Survival of the Sickest doesn't stop there. It goes on to demonstrate just how little modern medicine really understands about human health, and offers a new way of thinking that can help all of us live longer, healthier lives..

Feynman


Jim Ottaviani - 2011
    . . Nobel winner . . . bestselling author . . . safe-cracker. In this substantial graphic novel biography, First Second presents the larger-than-life exploits of Nobel-winning quantum physicist, adventurer, musician, world-class raconteur, and one of the greatest minds of the twentieth century: Richard Feynman. Written by nonfiction comics mainstay Jim Ottaviani and brilliantly illustrated by First Second author Leland Myrick, Feynman tells the story of the great man's life from his childhood in Long Island to his work on the Manhattan Project and the Challenger disaster. Ottaviani tackles the bad with the good, leaving the reader delighted by Feynman's exuberant life and staggered at the loss humanity suffered with his death. Anyone who ever wanted to know more about Richard P. Feynman, quantum electrodynamics, the fine art of the bongo drums, the outrageously obscure nation of Tuva, or the development and popularization of the field of physics in the United States need look no further than this rich and joyful work.• One of School Library Journal's Best Adult Books 4 Teens titles of 2011 • One of Horn Book's Best Nonfiction Books of 2011

Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street


William Poundstone - 2006
    One was mathematician Claude Shannon, neurotic father of our digital age, whose genius is ranked with Einstein's. The other was John L. Kelly Jr., a Texas-born, gun-toting physicist. Together they applied the science of information theory—the basis of computers and the Internet—to the problem of making as much money as possible, as fast as possible.Shannon and MIT mathematician Edward O. Thorp took the "Kelly formula" to Las Vegas. It worked. They realized that there was even more money to be made in the stock market. Thorp used the Kelly system with his phenomenonally successful hedge fund, Princeton-Newport Partners. Shannon became a successful investor, too, topping even Warren Buffett's rate of return. Fortune's Formula traces how the Kelly formula sparked controversy even as it made fortunes at racetracks, casinos, and trading desks. It reveals the dark side of this alluring scheme, which is founded on exploiting an insider's edge.Shannon believed it was possible for a smart investor to beat the market—and Fortune's Formula will convince you that he was right.