Book picks similar to
Social and Economic Networks by Matthew O. Jackson
economics
sociology
non-fiction
science
Social Network Analysis: Methods and Applications
Stanley Wasserman - 1994
Social Network Analysis: Methods and Applications reviews and discusses methods for the analysis of social networks with a focus on applications of these methods to many substantive examples. As the first book to provide a comprehensive coverage of the methodology and applications of the field, this study is both a reference book and a textbook.
Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life
Albert-László Barabási - 2002
Albert-László Barabási, the nation’s foremost expert in the new science of networks and author of Bursts, takes us on an intellectual adventure to prove that social networks, corporations, and living organisms are more similar than previously thought. Grasping a full understanding of network science will someday allow us to design blue-chip businesses, stop the outbreak of deadly diseases, and influence the exchange of ideas and information. Just as James Gleick and the Erdos–Rényi model brought the discovery of chaos theory to the general public, Linked tells the story of the true science of the future and of experiments in statistical mechanics on the internet, all vital parts of what would eventually be called the Barabási–Albert model.
Networks, Crowds, and Markets
David Easley - 2010
This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
John H. Miller - 2007
Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
Six Degrees: The Science of a Connected Age
Duncan J. Watts - 2003
Whether they bind computers, economies, or terrorist organizations, networks are everywhere in the real world, yet only recently have scientists attempted to explain their mysterious workings.From epidemics of disease to outbreaks of market madness, from people searching for information to firms surviving crisis and change, from the structure of personal relationships to the technological and social choices of entire societies, Watts weaves together a network of discoveries across an array of disciplines to tell the story of an explosive new field of knowledge, the people who are building it, and his own peculiar path in forging this new science.
Social Physics: How Good Ideas Spread— The Lessons from a New Science
Alex Pentland - 2014
Over years of groundbreaking experiments, he has distilled remarkable discoveries significant enough to become the bedrock of a whole new scientific field: social physics. Humans have more in common with bees than we like to admit: We’re social creatures first and foremost. Our most important habits of action—and most basic notions of common sense—are wired into us through our coordination in social groups. Social physics is about idea flow, the way human social networks spread ideas and transform those ideas into behaviors. Thanks to the millions of digital bread crumbs people leave behind via smartphones, GPS devices, and the Internet, the amount of new information we have about human activity is truly profound. Until now, sociologists have depended on limited data sets and surveys that tell us how people say they think and behave, rather than what they actually do. As a result, we’ve been stuck with the same stale social structures—classes, markets—and a focus on individual actors, data snapshots, and steady states. Pentland shows that, in fact, humans respond much more powerfully to social incentives that involve rewarding others and strengthening the ties that bind than incentives that involve only their own economic self-interest. Pentland and his teams have found that they can study patterns of information exchange in a social network without any knowledge of the actual content of the information and predict with stunning accuracy how productive and effective that network is, whether it’s a business or an entire city. We can maximize a group’s collective intelligence to improve performance and use social incentives to create new organizations and guide them through disruptive change in a way that maximizes the good. At every level of interaction, from small groups to large cities, social networks can be tuned to increase exploration and engagement, thus vastly improving idea flow. Social Physics will change the way we think about how we learn and how our social groups work—and can be made to work better, at every level of society. Pentland leads readers to the edge of the most important revolution in the study of social behavior in a generation, an entirely new way to look at life itself.
Networks: An Introduction
M.E.J. Newman - 2010
The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die
Eric Siegel - 2013
Rather than a "how to" for hands-on techies, the book entices lay-readers and experts alike by covering new case studies and the latest state-of-the-art techniques.You have been predicted — by companies, governments, law enforcement, hospitals, and universities. Their computers say, "I knew you were going to do that!" These institutions are seizing upon the power to predict whether you're going to click, buy, lie, or die.Why? For good reason: predicting human behavior combats financial risk, fortifies healthcare, conquers spam, toughens crime fighting, and boosts sales.How? Prediction is powered by the world's most potent, booming unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.Predictive analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future — lifting a bit of the fog off our hazy view of tomorrow — means pay dirt.In this rich, entertaining primer, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: -What type of mortgage risk Chase Bank predicted before the recession. -Predicting which people will drop out of school, cancel a subscription, or get divorced before they are even aware of it themselves. -Why early retirement decreases life expectancy and vegetarians miss fewer flights. -Five reasons why organizations predict death, including one health insurance company. -How U.S. Bank, European wireless carrier Telenor, and Obama's 2012 campaign calculated the way to most strongly influence each individual. -How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! -How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. -How judges and parole boards rely on crime-predicting computers to decide who stays in prison and who goes free. -What's predicted by the BBC, Citibank, ConEd, Facebook, Ford, Google, IBM, the IRS, Match.com, MTV, Netflix, Pandora, PayPal, Pfizer, and Wikipedia. A truly omnipresent science, predictive analytics affects everyone, every day. Although largely unseen, it drives millions of decisions, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.Predictive analytics transcends human perception. This book's final chapter answers the riddle: What often happens to you that cannot be witnessed, and that you can't even be sure has happened afterward — but that can be predicted in advance?Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
Big Data: A Revolution That Will Transform How We Live, Work, and Think
Viktor Mayer-Schönberger - 2013
“Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com
Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy
Cathy O'Neil - 2016
Increasingly, the decisions that affect our lives--where we go to school, whether we can get a job or a loan, how much we pay for health insurance--are being made not by humans, but by machines. In theory, this should lead to greater fairness: Everyone is judged according to the same rules.But as mathematician and data scientist Cathy O'Neil reveals, the mathematical models being used today are unregulated and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination--propping up the lucky, punishing the downtrodden, and undermining our democracy in the process.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Nexus: Small Worlds and the Groundbreaking Theory of Networks
Mark Buchanan - 2002
Federal Reserve Bank sneezes the global economy catches cold, read this book," writes John L. Casti (Santa Fe Institute). This "cogent and engaging" (Nature) work presents the fundamental principles of the emerging field of "small-worlds" theory—the idea that a hidden pattern is the key to how networks interact and exchange information, whether that network is the information highway or the firing of neurons in the brain. Mathematicians, physicists, computer scientists, and social scientists are working to decipher this complex organizational system, for it may yield a blueprint of dynamic interactions within our physical as well as social worlds.Highlighting groundbreaking research behind network theory, "Mark Buchanan's graceful, lucid, nontechnical and entertaining prose" (Mark Granovetter) documents the mounting support among various disciplines for the small-worlds idea and demonstrates its practical applications to diverse problems—from the volatile global economy or the Human Genome Project to the spread of infectious disease or ecological damage. Nexus is an exciting introduction to the hidden geometry that weaves our lives so inextricably together.
Numbersense: How to Use Big Data to Your Advantage
Kaiser Fung - 2013
Virtually every choice we make hinges on how someone generates data . . . and how someone else interprets it--whether we realize it or not.Where do you send your child for the best education? Big Data. Which airline should you choose to ensure a timely arrival? Big Data. Who will you vote for in the next election? Big Data.The problem is, the more data we have, the more difficult it is to interpret it. From world leaders to average citizens, everyone is prone to making critical decisions based on poor data interpretations.In Numbersense, expert statistician Kaiser Fung explains when you should accept the conclusions of the Big Data experts--and when you should say, Wait . . . what? He delves deeply into a wide range of topics, offering the answers to important questions, such as:How does the college ranking system really work?Can an obesity measure solve America's biggest healthcare crisis?Should you trust current unemployment data issued by the government?How do you improve your fantasy sports team?Should you worry about businesses that track your data?Don't take for granted statements made in the media, by our leaders, or even by your best friend. We're on information overload today, and there's a lot of bad information out there.Numbersense gives you the insight into how Big Data interpretation works--and how it too often doesn't work. You won't come away with the skills of a professional statistician. But you will have a keen understanding of the data traps even the best statisticians can fall into, and you'll trust the mental alarm that goes off in your head when something just doesn't seem to add up.Praise for NumbersenseNumbersense correctly puts the emphasis not on the size of big data, but on the analysis of it. Lots of fun stories, plenty of lessons learned--in short, a great way to acquire your own sense of numbers!Thomas H. Davenport, coauthor of Competing on Analytics and President's Distinguished Professor of IT and Management, Babson CollegeKaiser's accessible business book will blow your mind like no other. You'll be smarter, and you won't even realize it. Buy. It. Now.Avinash Kaushik, Digital Marketing Evangelist, Google, and author, Web Analytics 2.0Each story in Numbersense goes deep into what you have to think about before you trust the numbers. Kaiser Fung ably demonstrates that it takes skill and resourcefulness to make the numbers confess their meaning.John Sall, Executive Vice President, SAS InstituteKaiser Fung breaks the bad news--a ton more data is no panacea--but then has got your back, revealing the pitfalls of analysis with stimulating stories from the front lines of business, politics, health care, government, and education. The remedy isn't an advanced degree, nor is it common sense. You need Numbersense.Eric Siegel, founder, Predictive Analytics World, and author, Predictive AnalyticsI laughed my way through this superb-useful-fun book and learned and relearned a lot. Highly recommended! Tom Peters, author of In Search of Excellence
The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies
Erik Brynjolfsson - 2014
Digital technologies—with hardware, software, and networks at their core—will in the near future diagnose diseases more accurately than doctors can, apply enormous data sets to transform retailing, and accomplish many tasks once considered uniquely human.In The Second Machine Age MIT’s Erik Brynjolfsson and Andrew McAfee—two thinkers at the forefront of their field—reveal the forces driving the reinvention of our lives and our economy. As the full impact of digital technologies is felt, we will realize immense bounty in the form of dazzling personal technology, advanced infrastructure, and near-boundless access to the cultural items that enrich our lives.Amid this bounty will also be wrenching change. Professions of all kinds—from lawyers to truck drivers—will be forever upended. Companies will be forced to transform or die. Recent economic indicators reflect this shift: fewer people are working, and wages are falling even as productivity and profits soar.Drawing on years of research and up-to-the-minute trends, Brynjolfsson and McAfee identify the best strategies for survival and offer a new path to prosperity. These include revamping education so that it prepares people for the next economy instead of the last one, designing new collaborations that pair brute processing power with human ingenuity, and embracing policies that make sense in a radically transformed landscape.A fundamentally optimistic book, The Second Machine Age alters how we think about issues of technological, societal, and economic progress.
Theory of Games and Economic Behavior
John von Neumann - 1944
What began more than sixty years ago as a modest proposal that a mathematician and an economist write a short paper together blossomed, in 1944, when Princeton University Press published Theory of Games and Economic Behavior. In it, John von Neumann and Oskar Morgenstern conceived a groundbreaking mathematical theory of economic and social organization, based on a theory of games of strategy. Not only would this revolutionize economics, but the entirely new field of scientific inquiry it yielded--game theory--has since been widely used to analyze a host of real-world phenomena from arms races to optimal policy choices of presidential candidates, from vaccination policy to major league baseball salary negotiations. And it is today established throughout both the social sciences and a wide range of other sciences.This sixtieth anniversary edition includes not only the original text but also an introduction by Harold Kuhn, an afterword by Ariel Rubinstein, and reviews and articles on the book that appeared at the time of its original publication in the New York Times, tthe American Economic Review, and a variety of other publications. Together, these writings provide readers a matchless opportunity to more fully appreciate a work whose influence will yet resound for generations to come.