Practical C++ Programming


Steve Oualline - 1995
    But this high-level language is relatively difficult to master, even if you already know the C programming language.The 2nd edition of Practical C++ Programming is a complete introduction to the C++ language for programmers who are learning C++. Reflecting the latest changes to the C++ standard, this 2nd edition takes a useful down-to-earth approach, placing a strong emphasis on how to design clean, elegant code.In short, to-the-point chapters, all aspects of programming are covered including style, software engineering, programming design, object-oriented design, and debugging. It also covers common mistakes and how to find (and avoid) them. End of chapter exercises help you ensure you've mastered the material.Practical C++ Programming thoroughly covers: C++ Syntax Coding standards and style Creation and use of object classes Templates Debugging and optimization Use of the C++ preprocessor File input/output Steve Oualline's clear, easy-going writing style and hands-on approach to learning make Practical C++ Programming a nearly painless way to master this complex but powerful programming language.

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

High Performance MySQL: Optimization, Backups, Replication & Load Balancing


Jeremy D. Zawodny - 2004
    This book is an insider's guide to these little understood topics.Author Jeremy Zawodny has managed large numbers of MySQL servers for mission-critical work at Yahoo!, maintained years of contacts with the MySQL AB team, and presents regularly at conferences. Jeremy and Derek have spent months experimenting, interviewing major users of MySQL, talking to MySQL AB, benchmarking, and writing some of their own tools in order to produce the information in this book.In "High Performance MySQL" you will learn about MySQL indexing and optimization in depth so you can make better use of these key features. You will learn practical replication, backup, and load-balancing strategies with information that goes beyond available tools to discuss their effects in real-life environments. And you'll learn the supporting techniques you need to carry out these tasks, including advanced configuration, benchmarking, and investigating logs.Topics include: A review of configuration and setup optionsStorage engines and table typesBenchmarkingIndexesQuery OptimizationApplication DesignServer PerformanceReplicationLoad-balancingBackup and RecoverySecurity

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

The Art of Computer Programming, Volume 2: Seminumerical Algorithms


Donald Ervin Knuth - 1969
    -Byte, September 1995 I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up. -Charles Long If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing. -Bill Gates It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers. -Jonathan Laventhol The second volume offers a complete introduction to the field of seminumerical algorithms, with separate chapters on random numbers and arithmetic. The book summarizes the major paradigms and basic theory of such algorithms, thereby providing a comprehensive interface between computer programming and numerical analysis. Particularly noteworthy in this third edition is Knuth's new treatment of random number generators, and his discussion of calculations with formal power series. Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP), http: //msp.org

Writing Idiomatic Python 2.7.3


Jeff Knupp - 2013
    Each idiom comes with a detailed description, example code showing the "wrong" way to do it, and code for the idiomatic, "Pythonic" alternative. *This version of the book is for Python 2.7.3+. There is also a Python 3.3+ version available.* "Writing Idiomatic Python" contains the most common and important Python idioms in a format that maximizes identification and understanding. Each idiom is presented as a recommendation to write some commonly used piece of code. It is followed by an explanation of why the idiom is important. It also contains two code samples: the "Harmful" way to write it and the "Idiomatic" way. * The "Harmful" way helps you identify the idiom in your own code. * The "Idiomatic" way shows you how to easily translate that code into idiomatic Python. This book is perfect for you: * If you're coming to Python from another programming language * If you're learning Python as a first programming language * If you're looking to increase the readability, maintainability, and correctness of your Python code What is "Idiomatic" Python? Every programming language has its own idioms. Programming language idioms are nothing more than the generally accepted way of writing a certain piece of code. Consistently writing idiomatic code has a number of important benefits: * Others can read and understand your code easily * Others can maintain and enhance your code with minimal effort * Your code will contain fewer bugs * Your code will teach others to write correct code without any effort on your part

Programming Erlang


Joe Armstrong - 2007
    It's used worldwide by companies who need to produce reliable, efficient, and scalable applications. Invest in learning Erlang now.Moore's Law is the observation that the amount you can do on a single chip doubles every two years. But Moore's Law is taking a detour. Rather than producing faster and faster processors, companies such as Intel and AMD are producing multi-core devices: single chips containing two, four, or more processors. If your programs aren't concurrent, they'll only run on a single processor at a time. Your users will think that your code is slow.Erlang is a programming language designed for building highly parallel, distributed, fault-tolerant systems. It has been used commercially for many years to build massive fault-tolerated systems that run for years with minimal failures.Erlang programs run seamlessly on multi-core computers: this means your Erlang program should run a lot faster on a 4 core processor than on a single core processor, all without you having to change a line of code.Erlang combines ideas from the world of functional programming with techniques for building fault-tolerant systems to make a powerful language for building the massively parallel, networked applications of the future.This book presents Erlang and functional programming in the familiar Pragmatic style. And it's written by Joe Armstrong, one of the creators of Erlang.It includes example code you'll be able to build upon. In addition, the book contains the full source code for two interesting applications:A SHOUTcast server which you can use to stream music to every computer in your house, and a full-text indexing and search engine that can index gigabytes of data. Learn how to write programs that run on dozens or even hundreds of local and remote processors. See how to write robust applications that run even in the face of network and hardware failure, using the Erlang programming language.

Go in Practice


Matt Butcher - 2015
    Following a cookbook-style Problem/Solution/Discussion format, this practical handbook builds on the foundational concepts of the Go language and introduces specific strategies you can use in your day-to-day applications. You'll learn techniques for building web services, using Go in the cloud, testing and debugging, routing, network applications, and much more.

NSHipster: Obscure Topics in Cocoa & Objective C


Mattt Thompson - 2013
    In cultivating a deep understanding and appreciation of Objective-C, its frameworks and ecosystem, one is able to create apps that delight and inspire users. Combining articles from NSHipster.com with new essays, this book is the essential guide for modern iOS and Mac OS X developers.

UML Distilled: A Brief Guide to the Standard Object Modeling Language


Martin Fowler - 1997
    This third edition is the best resource for quick, no-nonsense insights into understanding and using UML 2.0 and prior versions of the UML. Some readers will want to quickly get up to speed with the UML 2.0 and learn the essentials of the UML. Others will use this book as a handy, quick reference to the most common parts of the UML. The author delivers on both of these promises in a short, concise, and focused presentation. This book describes all the major UML diagram types, what they're used for, and the basic notation involved in creating and deciphering them. These diagrams include class, sequence, object, package, deployment, use case, state machine, activity, communication, composite structure, component, interaction overview, and timing diagrams. The examples are clear and the explanations cut to the fundamental design logic. Includes a quick reference to the most useful parts of the UML notation and a useful summary of diagram types that were added to the UML 2.0. If you are like most developers, you don't have time to keep up with all the new innovations in software engineering. This new edition of Fowler's classic work gets you acquainted with some of the best thinking about efficient object-oriented software design using the UML--in a convenient format that will be essential to anyone who designs software professionally.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Graph Databases


Ian Robinson - 2013
    With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems.Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution.Model data with the Cypher query language and property graph modelLearn best practices and common pitfalls when modeling with graphsPlan and implement a graph database solution in test-driven fashionExplore real-world examples to learn how and why organizations use a graph databaseUnderstand common patterns and components of graph database architectureUse analytical techniques and algorithms to mine graph database information

HTML for the World Wide Web with XHTML and CSS (Visual QuickStart Guide)


Elizabeth Castro - 2002
    The task-based approach teaches readers how to combine HTML and CSS to create sharp and consistent Web pages.