Book picks similar to
Probabilistic Models of Cognition by Noah D. Goodman
ai
decision-science
programming
agi_track
The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine
Charles Petzold - 2008
Turing
Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be "computable," creating the field of computability theory in the process, a foundation of present-day computer programming.The book expands Turing's original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing's statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others.Interwoven into the narrative are the highlights of Turing's own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.
Cryptography and Network Security
Behrouz A. Forouzan - 2007
In this new first edition, well-known author Behrouz Forouzan uses his accessible writing style and visual approach to simplify the difficult concepts of cryptography and network security. This edition also provides a website that includes Powerpoint files as well as instructor and students solutions manuals. Forouzan presents difficult security topics from the ground up. A gentle introduction to the fundamentals of number theory is provided in the opening chapters, paving the way for the student to move on to more complex security and cryptography topics. Difficult math concepts are organized in appendices at the end of each chapter so that students can first learn the principles, then apply the technical background. Hundreds of examples, as well as fully coded programs, round out a practical, hands-on approach which encourages students to test the material they are learning.
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
Mining of Massive Datasets
Anand Rajaraman - 2011
This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium Proprocessor, Pentium II, III, 4
Barry B. Brey - 1991
This text provides a comprehensive view of programming and interfacing of the Intel family of Microprocessors from the 8088 through the latest Pentium 4 microprocessor. Organized in an orderly and manageable format, it offers over 200 programming examples using the Microsoft Macro Assembler program, and provides a thorough description of each Intel family members, memory systems, and various I/O systems.
The Lifebox, the Seashell, and the Soul: What Gnarly Computation Taught Me About Ultimate Reality, the Meaning of Life, and How to Be Happy
Rudy Rucker - 2005
This concept is at the root of the computational worldview, which basically says that very complex systems — the world we live in — have their beginnings in simple mathematical equations. We've lately come to understand that such an algorithm is only the start of a never-ending story — the real action occurs in the unfolding consequences of the rules. The chip-in-a-box computers so popular in our time have acted as a kind of microscope, letting us see into the secret machinery of the world. In Lifebox, Rucker uses whimsical drawings, fables, and humor to demonstrate that everything is a computation — that thoughts, computations, and physical processes are all the same. Rucker discusses the linguistic and computational advances that make this kind of "digital philosophy" possible, and explains how, like every great new principle, the computational world view contains the seeds of a next step.
Spark: The Definitive Guide: Big Data Processing Made Simple
Bill Chambers - 2018
With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals.
You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library.
Get a gentle overview of big data and Spark
Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples
Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames
Understand how Spark runs on a cluster
Debug, monitor, and tune Spark clusters and applications
Learn the power of Structured Streaming, Spark’s stream-processing engine
Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Introduction to Information Retrieval
Christopher D. Manning - 2008
Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.
Vision: A Computational Investigation into the Human Representation and Processing of Visual Information
David Marr - 1982
A computational investigation into the human representation and processing of visual information.
The New Mind Readers: What Neuroimaging Can and Cannot Reveal about Our Thoughts
Russell A. Poldrack - 2018
The New Mind Readers provides a compelling look at the origins, development, and future of these extraordinary tools, revealing how they are increasingly being used to decode our thoughts and experiences--and how this raises sometimes troubling questions about their application in domains such as marketing, politics, and the law.Russell Poldrack takes readers on a journey of scientific discovery, telling the stories of the visionaries behind these breakthroughs. Along the way, he gives an insider's perspective on what is perhaps the single most important technology in cognitive neuroscience today--functional magnetic resonance imaging, or fMRI, which is providing astonishing new insights into the contents and workings of the mind. He highlights both the amazing power and major limitations of these techniques and describes how applications outside the lab often exceed the bounds of responsible science. Poldrack also details the unique and sometimes disorienting experience of having his own brain scanned more than a hundred times as part of a landmark study of how human brain function changes over time.Written by one of the world's leading pioneers in the field, The New Mind Readers cuts through the hype and misperceptions surrounding these emerging new methods, offering needed perspective on what they can and cannot do--and demonstrating how they can provide new answers to age-old questions about the nature of consciousness and what it means to be human.
Grokking Deep Learning
Andrew W. Trask - 2017
Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.
Neural Networks and Deep Learning
Michael Nielsen - 2013
The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.
Bayesian Reasoning and Machine Learning
David Barber - 2012
They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition
Dan Jurafsky - 2000
This comprehensive work covers both statistical and symbolic approaches to language processing; it shows how they can be applied to important tasks such as speech recognition, spelling and grammar correction, information extraction, search engines, machine translation, and the creation of spoken-language dialog agents. The following distinguishing features make the text both an introduction to the field and an advanced reference guide.- UNIFIED AND COMPREHENSIVE COVERAGE OF THE FIELDCovers the fundamental algorithms of each field, whether proposed for spoken or written language, whether logical or statistical in origin.- EMPHASIS ON WEB AND OTHER PRACTICAL APPLICATIONSGives readers an understanding of how language-related algorithms can be applied to important real-world problems.- EMPHASIS ON SCIENTIFIC EVALUATIONOffers a description of how systems are evaluated with each problem domain.- EMPERICIST/STATISTICAL/MACHINE LEARNING APPROACHES TO LANGUAGE PROCESSINGCovers all the new statistical approaches, while still completely covering the earlier more structured and rule-based methods.