Earth's Changing Climate


Richard Wolfson - 2007
    Is Earth Warming? 2. Butterflies, Glaciers, and Hurricanes 3. Ice Ages and Beyond 4. In the Greenhouse 5. A Tale of Three Planets 6. Global Recycling 7. The Human Factor 8. Computing the Future 9. Impacts of Climate Change 10. Energy and Climate 11. EnergyResources and Alternatives 12. Sustainable Futures?

Psychology of Human Behavior


David W. Martin - 2006
    A leather couch. A neatly bearded, scholarly looking gentleman seated off to the side, only rarely speaking, quietly taking notes and occasionally nodding as the couch's supine occupant tells his or her story.In some ways, such a picture would indeed be accurate, a confirmation not only of the importance of Sigmund Freud in the history of psychology but also of the degree Freud dominates the popular perception of this discipline.But the picture would be inaccurate, as well.Freud was a physician, and the majority of psychologists are not. Both the psychoanalytic theory he pioneered and the therapeutic approach it was based onpsychoanalysishave seen their dominance wane in recent years. And psychologists today, as indebted as they may be to Freud's landmark explorations of our psychological landscape, are involved in far more than helping people cope with inner demons.The expansive and varied roles of contemporary psychologists create another common imageof a crowd of white-coated researchers gathered around a maze, carefully recording a white rat's performance. It's another inadequate picture because experimental psychologists today usually work with people, not animals.Moreover, the areas of interest those psychologists are pursuing now encompass every part of the process we use to develop and function as people:How we perceive, remember, and learnHow we select our friends and partners and retain their affection and loveThe things that motivate us as we make our choices in lifeEven how we relate to the vehicles, machinery, computer systems, or workspaces we encounter as we make our livings.

The History of Science: 1700-1900


Frederick Gregory - 2003
    Yet, as the 1700s began, the mysteries of the universe were pondered by "natural philosophers"—the term "scientist" didn't even exist until the mid 19th century—whose explanations couldn't help but be influenced by the religious thought and political and social contexts that shaped their world.The radical ideas of the Enlightenment were especially important and influential. In this course you see how the work of these natural philosophers prepared the way for the more familiar world of science we recognize today.

Great Ideas of Classical Physics


Steven Pollock - 2006
    The Great Ideas of Classical Physics 2. Describing MotionA Break from Aristotle 3. Describing Ever More Complex Motion 4. Astronomy as a Bridge to Modern Physics 5. Isaac NewtonThe Dawn of Classical Physics 6. Newton QuantifiedForce and Acceleration 7. Newton and the Connections to Astronomy 8. Universal Gravitation 9. Newton's Third Law 10. Conservation of Momentum 11. Beyond NewtonWork and Energy 12. Power and the Newtonian Synthesis 13. Further DevelopmentsStatic Electricity 14. Electricity, Magnetism, and Force Fields 15. Electrical Currents and Voltage 16. The Origin of Electric and Magnetic Fields 17. Unification IMaxwell's Equations 18. Unification IIElectromagnetism and Light 19. Vibrations and Waves 20. Sound Waves and Light Waves 21. The Atomic Hypothesis 22. Energy in SystemsHeat and Thermodynamics 23. Heat and the Second Law of Thermodynamics 24. The Grand Picture of Classical Physics

Redefining Reality: The Intellectual Implications of Modern Science


Steven Gimbel - 2015
    For example, the matter that comprises all stars, planets, and living things turns out to be just a fraction of what actually exists. Moreover, we think that we control our actions, but data analytics can predict, with astonishing accuracy, when we will wake up, what we will buy, and even whom we will marry.The quest to pin down what's real and what's illusory is both philosophical and scientific, a metaphysical search for ultimate reality that goes back to the ancient Greeks. For the last 400 years, this search has been increasingly guided by scientists, who create theories and test them in order to define and redefine reality. And we have developed the power to alter our own reality in major ways - to defeat diseases, compensate for disabilities, and augment our intellect with computers. Where is that trend going?Experience the thrill of this exciting quest in 36 wide-ranging lectures that touch on many aspects of the ceaseless search for reality. From the birth of the universe to brain science, discover that separating the real from the illusory is an exhilarating intellectual adventure.Scientists and philosophers are not alone in grappling, at an intellectual level, with reality. Some of the most accessible interpretations are by painters, novelists, filmmakers, and other artists whose works not only draw on the latest discoveries but also sometimes inspire them. Explore examples such as Alice in Wonderland, pointillism, cubism, surrealism, and reality TV.And since dealing with reality is an experience we all share, this course is designed for people of all backgrounds.

Science Wars: What Scientists Know and How They Know It


Steven L. Goldman - 2006
    (B) Scientific knowledge is always provisional and tells us nothing that is universal, necessary, or certain about the world. Welcome to the science wars—a long-running battle over the status of scientific knowledge that began in ancient Greece, raged furiously among scientists, social scientists, and humanists during the 1990s, and has re-emerged in today's conflict between science and religion over issues such as evolution.Professor Steven L. Goldman, whose Teaching Company course on Science in the 20th Century was praised by customers as "a scholarly achievement of the highest order" and "excellent in every way," leads you on a quest for the nature of scientific reasoning in this intellectually pathbreaking lecture series, Science Wars: What Scientists Know and How They Know It.Those who have taken Professor Goldman's previous course, which is an intensive survey of the revolution in scientific knowledge from 1900 to 2000, may have wondered: if what counts as scientific knowledge can transform so dramatically within only 100 years, what exactly is scientific knowledge? Science Wars addresses this surprisingly difficult question.Five Centuries of the Science WarsIn 24 half-hour lectures, Science Wars explores the history of competing conceptions of scientific knowledge and their implications for science and society from the onset of the Scientific Revolution in the 1600s to the present. It may seem that the accelerating pace of discoveries, inventions, and unexpected insights into nature during this period guarantees the secure foundations of scientific inquiry, but that is far from true. Consider these cases:The scientific method: In the 1600s the English philosopher Francis Bacon defined the scientific method in its classic form: the use of inductive reasoning to draw conclusions from an exhaustive body of facts. But "no scientist has ever been a strict Baconian," says Professor Goldman. "If you followed that, you would get nowhere."A "heated" debate: Around 1800 the dispute over the nature of heat was resolved in favor of the theory that heat is motion and not a substance given off during burning. But then the French mathematical physicist Joseph Fourier wrote a set of equations that accurately described how heat behaves regardless of what it "really" is, which, Fourier contended, was not a scientific question at all.Paradigm shifts: The publication in 1962 of Thomas Kuhn's The Structure of Scientific Revolutions precipitated a radical change in attitudes toward scientific knowledge, prompted by Kuhn's insight that science is not an entirely rational enterprise, and that its well-established theories (or paradigms) are overturned in a revolutionary, nonlogical process.Postmodern putdown: The postmodern attack on science as a privileged mode of inquiry made some headway in the late 20th century. But the credibility of the movement wilted in 1996, when a postmodern journal unwittingly published a spoof by physicist Alan Sokal, purporting to prove that physical theory was socially constructed. Sokal then exposed his piece as a parody.In the penultimate lecture of the course, Professor Goldman considers intelligent design—the argument that evolution can't account for the immense complexity of life and that a master designer must be at work. He approaches this topical debate by asking: What are the minimum criteria that define a hypothesis as scientific, and does intelligent design qualify? Having already covered five centuries of the science wars in the previous lectures, you will analyze this controversy with a set of tools that allows you to see the issues in a sharp, new light.What Is Reality?"Fasten your seatbelts," says Professor Goldman at the outset of Lecture 21—an advisory that applies equally to the whole course, which covers an astonishing array of ideas and thinkers. Throughout, Professor Goldman never loses his narrative thread, which begins 2,400 years ago with Plato's allegorical battle between "the gods" and "the earth giants"—between those for whom knowledge is universal, necessary, and certain; and those for whom it cannot be so and is based wholly on experience.The problem of what constitutes scientific knowledge can be illustrated with one of the most famous and widely accepted scientific theories of all time, Nicolaus Copernicus's heliostatic (stationary sun) theory of the solar system, which has undergone continual change since it was first proposed in 1543: Copernicus called for the planets to move in uniform circular motion around the sun, slightly displaced from the center. Using observations by Tycho Brahe, Johannes Kepler revised the Copernican model, discarding the ancient dogma of circular motion, which did not fit the data. Instead, he guessed that the planets in fact move in elliptical orbits. In his influential work endorsing the Copernican theory, Galileo ignored Kepler's corrections and opted for circular motion. Notoriously, the Catholic Church condemned Galileo for heresy. But the church was actually correct that he had no basis for claiming the heliocentric theory was true, rather than simply an interpretation of experience. Galileo's picture of space was superseded by Newton's and later by Einstein's, which also will doubtless be revised. Even something as basic as the elliptical motion of the planets is a vast oversimplification. There are no closed curves in space, since the solar system is moving around the center of the galaxy; the galaxy is moving within the local cluster; and the local cluster is also moving. Although we still call the conventional picture of the solar system Copernican astronomy, there is effectively no resemblance between astronomy today and Copernicus's 1543 theory of the heavens. The same is also true of other theories, such as the atomic theory of matter. All scientific theories are in a state of ceaseless revision, which raises the question of what reality "really" is. As the contemporary philosopher of science Mary Hesse has pointed out, the lesson of the history of science seems to be that the theories we currently hold to be true are as likely to be overturned as the theories they replaced!Sharpen Your Understanding of What Science IsThe uncertainty about the status of scientific knowledge and about the objectivity of the scientific enterprise led to a broad assault on science in the late 20th century by sociologists, philosophers, and historians, many connected with the postmodern movement. The lectures covering this attack and the ensuing counterattack by scientists are some of the most thrilling in the course and involve a number of figures whom Professor Goldman knows personally.Of one of the firebrands in this conflict, the late Viennese philosopher of science Paul Feyerabend, Professor Goldman says, "I myself took a seminar with Feyerabend when he was teaching at Berkeley in the early 1960s. … Feyerabend was not really off the wall, although he was often depicted that way. … He too recognized, as everyone must, that after all, science does work and science is knowledge of a sort. It's just not the absolute knowledge that scientists and philosophers have historically claimed that it is."By the time you reach the end of this course, you will understand exactly what science is, and you will be enlightened about a fascinating problem that perhaps you didn't even know existed. "There have been a raft of popular books about what scientists know," says Professor Goldman, "but to the best of my knowledge, there is not a single one of these popular books that focuses centrally on the question of how scientists know what they know."This course serves as that book.Course Lecture Titles1. Knowledge and Truth Are Age-Old Problems 2. Competing Visions of the Scientific Method 3. Galileo, the Catholic Church, and Truth 4. Isaac Newtons Theory of the Universe 5. Science vs. Philosophy in the 17th Century 6. Locke, Hume, and the Path to Skepticism 7. Kant Restores Certainty 8. Science, Society, and the Age of Reason 9. Science Comes of Age in the 19th Century 10. Theories Need Not Explain 11. Knowledge as a Product of the Active Mind 12. Trading Reality for Experience 13. Scientific Truth in the Early 20th Century 14. Two New Theories of Scientific Knowledge 15. Einstein and Bohr Redefine Reality 16. Truth, Ideology, and Thought Collectives 17. Kuhn's Revolutionary Image of Science 18. Challenging Mainstream Science from Within 19. Objectivity Under Attack 20. Scientific Knowledge as Social Construct 21. New Definitions of Objectivity 22. Science Wars of the Late 20th Century 23. Intelligent Design and the Scope of Science 24. Truth, History, and Citizenship12 Audio CDs(24 lectures, 30 minutes/lecture)

Mind-Body Medicine: The New Science of Optimal Health


Jason M. Satterfield - 2013
    While it’seasy to see that stress affects health and well-being, or that your blood pressure rises when you’re angry, cutting-edge research shows that the mind-body connection goes much further.Numerous studies on the brain’s interaction with the body demonstrate that health is directly affected by our social environments, socioeconomic status, culture, behaviors, relationships, psychological states, and habits of mind, among many factors. Current mind-body science reveals facts such as these: As few as eight weeks of mindfulness meditation can meaningfully boost your immune system. Extreme stress and low social support increase the risk of breast cancer by a factor of 9. Contact with nature is correlated with numerous positive health outcomes, including improved attention for children, reduced stress, and enhanced work performance. Chronic hostility portends calcification of the coronary arteries, even in young people. Expressive writing by patients is correlated with improved outcomes for both asthma and rheumatoid arthritis.Mind-body medicine—working in tandem with traditional medical practice—makes use of a large spectrum of psychological, physical, and behavioral treatments, drawn from many disciplines, in an approach to health care that aims to treat the whole person. It provides highly effective resources for preventing and treating a wide range of medical conditions, such as cardiovascular disease, stress, cancer, and depression—as well as for fostering the ultimate goals of health care: truly optimal and lasting physical health, and emotional and psychological well-being.A knowledge of this exciting field offers you critical understanding of the state of the art of health care and a significant new direction in medicine. But beyond valuable knowledge, a grounding in mind-body medicine gives you numerous practical, empowering tools for your own health care, as well as that of your family—tools that can make a profound difference for healthful, vibrant living.In Mind-Body Medicine: The New Science of Optimal Health, you’ll study this subject in compelling depth, with the expert guidance of Professor Jason M. Satterfield of the University of California, San Francisco. These 36 eye-opening lectures offer you a comprehensive overview of the field, providing rigorous answers to the questions of what makes us sick, what makes us well, and what we can do about it.You’ll look closely at the anatomical and biological systems through which what is “outside” in the environment gets “inside” to affect our minds and bodies. You’ll also examine recent research on subjects ranging from the impact our emotions and psychology have on health to the crucial roles that social, cultural, and behavioral factors play. And you’ll learn about effective mind-body treatments for numerous common medical conditions and diseases.Finally, you’ll finish the course with a toolbox of ideas and interventions for your personal wellness goals, empowering you to partner more effectively with your medical providers and maximize your own health.A Remarkable New Context for Health Care Professor Satterfield, a highly respected professor of clinical medicine and a specialist on the intersection of psychological factors and physical health, brings to the table his deep knowledge of mind-body science and extensive clinical experience in its application.In the course’s opening, he introduces you to the model of “biopsychosocial medicine,” which looks at the relationship between biological, psychological, and social factors in health.In studying how the biopsychosocial model is applied in modern medicine, you delve into these core subject areas:Biological pathways:You first investigate the anatomy and physiology of four biological systems through which the “outside” gets “in.” By reviewing a detailed study of the autonomic nervous system and the neuroendocrine system, discover how the brain activates the body’s two stress-response systems, and how these systems crucially affect health and well-being. Learn also about the physiology of immune function and the effects of stress on immune response and healing. Study the mechanisms of genetics as well as fascinating research indicating that your behavior can alter your genetic material, for better or worse—changes that can be passed on to future generations.Psychological factors in health: In the course of nine lectures, you look in depth at the critical ways in which psychology affects the body. Learn how negative emotional states such as anger and hostility can influence both the onset and progression of disease, and how positive emotions aid substantially in healing and wellness. Study how cognition—the ways in which we think and process our experiences—affects emotional states and behavior. Drawing from cognitive and other behavioral therapies, learn effective techniques for reshaping thinking, emotions, and behavior. Review evidence that certain personality types may be predisposed to conditions such as cardiovascular disease and depression, and learn how we can compensate for risk-carrying personality traits by working with cognitions and emotions. Investigate the neuroscience of behavior and the important effects of our behaviors on both disease and disease prevention. Look at stress as an integration of biological, cognitive, and social factors, and see how we can approach stress response and coping as a developmental skill. Social and ecological factors: You also study the important effects on health of factors such as culture, identity, socioeconomic status, social support, communities, and public health policy. Examine the studied correlations of income to health, education level to longevity, and ethnicity to susceptibility to disease, and consider how we can use this knowledge to benefit both individual and public health. Review research linking social support to health in many medical conditions, such as heart disease, cancer, and pregnancy; and do a detailed assessment to evaluate and strengthen your own social support network. Investigate how spiritual affiliations and practices have distinct physical benefits, such as reducing blood pressure, cortisol, and inflammation; improving lipid profiles and cardiovascular health; and extending life expectancy. Assess how physical environments affect health, how national and local culture impacts health-related behaviors, and how public initiatives can create healthier behaviors, environments, and communities.Tools and Strategies for Optimal WellnessBuilding on the biopsychosocial model, you study mind-body treatments for common conditions such as cardiovascular disease, stress, cancer, obesity, chronic pain, depression, anxiety, and post-traumatic stress disorder.Here, you learn about specific practices and interventions that you can use in your own health care program, such as these. Stress management: For both personal and occupational stress, learn about a spectrum of stress management approaches, from cognitive restructuring and perspective shifting to meditation, breathing techniques, relaxation training, and the learnable skill of resilience. Strategies for successful behavior change: With reference to concerns such as lifestyle change, weight management, and disease prevention, study the leading models of effective behavior change, as well as specific approaches such as the strategies of motivational interviewing, the four key elements of change, and the internal skills of self-regulation. Heart disease—prevention and treatment: Survey psychosocial interventions for heart disease, including a range of behavior change approaches, stress and emotion management, somatic quieting, social connection, and dramatic evidence that cardiac disease can be reversed through lifestyle change. Treatment of pain: Study mind-body factors in pain experience, and learn about treatments including cognitive and behavior change, acupuncture, mindfulness-based stress reduction, and biofeedback. Fatigue, headaches, insomnia: Investigate the variety of medical conditions that show no clear organic cause, such as chronic fatigue, tension headaches, and sleep disorders; and review effective psychological, physical, and behavioral approaches to treatment.Professor Satterfield’s teaching combines an extraordinary breadth of knowledge, clear and accessible explanations of the science involved, and a highly compassionate approach to patient care. He enriches the lectures with stories and case studies of patients in treatment for stress, heart conditions, insomnia, trauma, and other health challenges, showing you what mind-body medicine looks like in clinical practice and how you can integrate its lessons into your health program and daily life.With the knowledge and tools you’ll learn in Mind-Body Medicine: The New Science of Optimal Health, you can begin your own biopsychosocial assessment, identify your strengths and challenges in partnership with your medical providers, and take authentic steps toward your fullest physical and mental wellness.

12 Essential Scientific Concepts


Indre Viskontas - 2014
    The answer: with the essentials. Now, finally satisfy your desire for scientific inquiry in a way that makes this enormous field accessible, understandable, and undeniably captivating. Professor Viskontas boils down the scientific world into 12 key concepts every educated person should know. Devoting two lectures to each concept to give you more time to engage with it, her 24-lecture series is an engaging and enlightening introduction to everything from the behavior of subatomic particles to the latest theories about the Big Bang. Throughout, you'll get accessible looks at key building blocks of scientific knowledge, including brain plasticity, fluid mechanics, electromagnetism, genetics, quantum theory, emergence, evolution, thermodynamics, the Big Bang, and the nature of matter. Each concept is presented in a clear, concise way that will inform and delight you, and that will give you the opportunity to probe the invisible life of living cells, visit the universe seconds after its birth, and much more. Concepts that may have eluded you in school, that you may not be familiar with, or that you simply never appreciated for their intricate beauty are now brought to vivid life in a way that sticks. Welcome to the world of science - reduced to its powerful essence.

The Higgs Boson and Beyond


Sean Carroll - 2015
    The hunt for the Higgs was the subject of wide media attention due to the cost of the project, the complexity of the experiment, and the importance of its result. And, when it was announced with great fanfare in 2012 that physicists has succeeded in creating and identifying this all-important new particle, the discovery was celebrated around the world.And yet, virtually no one who read that news could tell you what, exactly, the Higgs boson was, and why its discovery was so important that we had to spend 10 billion dollars and build the single largest and most complex device in the history of mankind in order to find it. When you understand the details, this story ranks as one of the most thrilling in the history of modern science.Award-winning theoretical physicist Sean Carroll, a brilliant researcher as well as a gifted speaker who excels in explaining scientific concepts to the public, is perfectly positioned to tell this story. In this 12-lecture masterpiece of scientific reporting, you'll learn everything you need to know to fully grasp the significance of this discovery, including the basics of quantum mechanics; the four forces that comprise the Standard Model of particle physics; how these forces are transmitted by fields and particles; and the importance of symmetry in physics.You also get an in-depth view of the Large Hadron Collider - the largest machine ever built, and the device responsible for finally revealing the concept of the Higgs boson as reality. By the end, you'll understand how the Higgs boson verifies the final piece in the Standard Model of particle physics, and how its discovery validates and deepens our understanding of the universe.

Exploring Metaphysics


David Kyle Johnson - 2014
    The truth is, while metaphysics is among the oldest strands of philosophical thought—an inquiry into the very nature ofreality—metaphysics is also on the cutting edge of today’s scientific discoveries.

The Inexplicable Universe: Unsolved Mysteries


Neil deGrasse Tyson - 2012
    And with the advent of modern science, great minds have turned to testing and experimentation rather than mere thought as a way of approaching and grappling with some of the universe's most pressing and vexing dilemmas. So what is our latest picture of some of the most inexplicable features of the universe? What still remains to be uncovered? What are some of the next avenues of exploration for today's chemists, physicists, biologists, and astronomers? Pondering the answers to these and other questions is a great way to appreciate the grandeur and complexity of the world around you, better understand and discuss news and developments in science, and spark further interest in some of science's many exciting areas of study. "We know a lot about the universe. But there's even more that we don't know,"says astrophysicist and Professor Neil deGrasse Tyson, director of the Hayden Planetarium, an award-winning lecturer, and one of the world's foremost experts on the secrets of the universe. And his course The Inexplicable Universe: Unsolved Mysteries is the perfect gateway into this mind-bending and eye-opening subject. Each of these six self-contained lectures is a marvelous journey to the frontiers of the known (and unknown) universe and introduces you to tantalizing questions being addressed by the world's top scientists. Undeniably engaging and fascinating, this lecture series is a wonderful entrée to scientific pursuits that lie at the very heart of the history and nature of our universe. An Informed Scientific Conversation Central to The Inexplicable Universe is the way it takes you deep into hidden layers of the universe in a manner that is extremely accessible. Rather than a stern lecture given before a podium complete with confusing mathematics, Professor Tyson's lectures have the feel of an informed conversation that manages to be both thorough and easy to grasp. With each of the inexplicable mysteries he lays bare for you, Professor Tyson introduces you to the history behind it, lays out the science that has helped us grasp it, explains what researchers have discovered to date, and reveals what we have yet to discover. And while the topics explore subjects in everything from quantum mechanics to cosmology to string theory, you'll never feel overwhelmed by what you're learning. In fact, you're more likely to find yourself intrigued by just how much we know-and curious about what the near future will possibly reveal. Explore Fascinating Territory So what territory will you chart in this course? Here are some of the inexplicable ideas you'll investigate in these lectures. Neutrinos: Discovered in 1956, these fast-moving, ghostlike particles are made in abundance in the sun's core. They hardly interact with matter; it takes a light-year's worth of lead (5.8 trillion miles) to stop a neutrino. Not only that, but 65 billion neutrinos pass through every centimeter of your body that's facing the sun every second of every day. String theory: This astounding theory offers the hope of unifying all the particles and forces of physics. In the past several decades since the dawn of string theory, it's been imagined that all the fundamental particles we see and measure are just the manifestation in our dimension of strings vibrating in higher dimensions and at different frequencies. Quantum foam: This idea posits that when the fabric of space and time is so tightly curved on itself, space-time is less a smooth curve and more like the froth on a latte. In this state of matter and energy, quantum fluctuations can spawn entire universes, each with slightly different laws of physics within them! In addition, you'll also get a peek at what it would be like to travel through a black hole, ponder the possibility that life on Earth originated in debris from Mars, probe the supposed existence of multiple universes, and even imagine the possible end of the universe itself. A One-on-One Chat with a Renowned Science Educator Professor Tyson is renowned throughout the scientific community and the media for his vast knowledge, his penetrating insights, and his amazing ability to make even the most intimidating areas of science accessible, engaging, and-most of all-enjoyable. He brings the same inviting tone and sharp intellect to The Inexplicable Universe as he does to his range of media appearances on popular television programs. Due to its unique subject matter The Inexplicable Universe takes a highly visual approach. Many of the fascinating subjects in the course, such as black holes, string theory, and multiple universes are best demonstrated visually and Professor Tyson's lectures feature expertly crafted computer animations, explanatory diagrams, high resolution photographs, and other instructive visual elements. In order to better explain to you some of the grand, intricate ideas being discussed, Professor Tyson personally interacts with many of these animations and graphics using greenscreen technology. Please note that, due to the highly visual nature of The Inexplicable Universe, the course does not come with a guidebook. We did not believe a simple book could adequately convey the information in the course, and rather than make a guidebook that did not do the course justice, we decided to not offer one. However, we believe that you will be very excited by how we produced this course and will find it to be an enriching and fulfilling experience in your educational journey.

Understanding the Secrets of Human Perception


Peter M. Vishton - 2011
    Nothing you experience would be possible without the intricate power of your senses. But how much about them do you really know?Your ability to sense and perceive the world around you is so richly detailed and accurate as to be miraculous. No tool in the entire universe of scientific exploration can come close to matching the ability of your brain to use information sensed by your eyes, ears, skin, tongue, and nose to produce a rich sensory experience in just milliseconds.In recent years, neurobiologists and other scientists have uncovered new insights into how your senses work and the amazingly complex and fascinating things they can do. And now you can share in what they've discovered-through this intriguing series of 24 lectures from an award-winning teacher.Knowing how your senses work and the ways they shape how you see, interact with, and understand your life will help you think more critically about everything you sense and perceive, strengthen your appreciation of the senses that make this possible, prepare you to be an active consumer of new scientific evidence on how our senses work, and much more.With Professor Vishton as your guide, you'll. consider each of your senses from multiple perspectives:Explore how your brain processes different sensory informationConsider how your senses work together and within the context of the environment around youdiscover how your senses connect you to the world and other people.Using both cutting-edge research and simple experiments, tests, and demonstrations to hone your understanding, he has created a world-class learning experience that will change the way you think about your senses.

Biology: The Science of Life


Stephen Nowicki - 2004
    Each part contains six audio tapes and a booklet.

The Theory of Everything: The Quest to Explain All Reality


Don Lincoln - 2018
    He was trying to find an equation that explained all physical reality - a theory of everything. He failed, but others have taken up the challenge in a remarkable quest that is shedding light on unsuspected secrets of the cosmos.Experimental physicist and award-winning educator Dr. Don Lincoln of the Fermi National Accelerator Laboratory takes you on this exciting journey in The Theory of Everything: The Quest to Explain All Reality. Suitable for the intellectually curious at all levels and assuming no background beyond basic high-school math, these 24 half-hour lectures cover recent developments at the forefront of particle physics and cosmology, while delving into the history of the centuries-long search for this holy grail of science.You trace the dream of a theory of everything through Newton, Maxwell, Einstein, Bohr, Schrödinger, Feynman, Gell-Mann, Weinberg, and other great physicists, charting their progress toward an all-embracing, unifying theory. Their resulting equations are the masterpieces of physics, which Dr. Lincoln explains in fascinating and accessible detail. Studying them is like touring a museum of great works of art - works that are progressing toward an ultimate, as-yet-unfinished masterpiece.Listening Length: 12 hours and 21 minutes

Philosophy Of Mind: Brains, Consciousness And Thinking Machines


Patrick Grim - 2013