Fearful Symmetry: The Search for Beauty in Modern Physics


A. Zee - 1986
    A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how today's theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, the book describes the majestic sweep and accomplishments of twentieth-century physics. In the end, we stand in awe before the grand vision of modern physics--one of the greatest chapters in the intellectual history of humankind.

Physics for Scientists and Engineers


Douglas C. Giancoli - 1988
    For the calculus-based General Physics course primarily taken by engineers and scientists.

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Science: A Four Thousand Year History


Patricia Fara - 2009
    Sweeping through the centuries from ancient Babylon right up to the latest hi-tech experiments in genetics and particle physics, Fara's book also ranges internationally, challenging notions of European superiority by emphasizing the importance of scientific projects based around the world, including revealing discussions of China and the Islamic Empire alongside the more familiar stories about Copernicus's sun-centered astronomy, Newton's gravity, and Darwin's theory of evolution.We see for instance how Muslim leaders encouraged science by building massive libraries, hospitals, and astronomical observatories and we rediscover the significance of medieval Europe--long overlooked--where, surprisingly, religious institutions ensured science's survival, as the learning preserved in monasteries was subsequently developed in new and unique institutions: universities. Instead of focussing on esoteric experiments and abstract theories, she explains how science belongs to the practical world of war, politics, and business. And rather than glorifying scientists as idealized heroes, she tells true stories about real people--men (and some women) who needed to earn their living, who made mistakes, and who trampled down their rivals.

An Introduction To Quantum Field Theory


Michael E. Peskin - 1994
    The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.

Albert Einstein: And the Frontiers of Physics


Jeremy Bernstein - 1995
    They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

What Is Relativity?: An Intuitive Introduction to Einstein's Ideas, and Why They Matter


Jeffrey O. Bennett - 2014
    Yet as bestselling author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in hand, Bennett begins an entertaining introduction to Einstein's theories, describing the amazing phenomena readers would actually experience if they took a trip through a black hole.The theory of relativity also gives us the cosmic speed limit of the speed of light, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: e = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe, and it is not "just a theory: " every major prediction of relativity has been tested to exquisite precision and its practical applications include the Global Positioning System (GPS). Bennett proves anyone can understand the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important not only to science but also to the way we view ourselves as human beings.

In Search of Time: The Science of a Curious Dimension


Dan Falk - 2008
    It defines our experience of the world; it echoes through our every waking hour. Time is the very foundation of conscious experience. Yet as familiar as it is, time is also deeply mysterious. We cannot see, hear, smell, taste, or touch it. Yet we do "feel" it--or at least we "think" we feel it. No wonder poets, writers, philosophers, and scientists have grappled with time for centuries.In his latest book, award-winning science writer Dan Falk chronicles the story of how humans have come to understand time over the millennia, and by drawing from the latest research in physics, psychology, and other fields, Falk shows how that understanding continues to evolve. "In Search of Time" begins with our earliest ancestors' perception of time and the discoveries that led--with much effort--to the Gregorian calendar, atomic clocks, and "leap seconds." Falk examines the workings of memory, the brain's remarkable "bridge across time," and asks whether humans are unique in their ability to recall the past and imagine the future. He explores the possibility of time travel, and the paradoxes it seems to entail. Falk looks at the quest to comprehend the beginning of time and how time--and the universe--may end. Finally, he examines the puzzle of time's "flow," and the remarkable possibility that the passage of time may be an illusion.Entertaining, illuminating, and ultimately thought provoking, "In Search of Time "reveals what some of our most insightful thinkers have had to say about time, from Aristotle to Kant, from Newton to Einstein, and continuing with the brightest minds of today.

Adding a Dimension: Seventeen Essays on the History of Science


Isaac Asimov - 1964
    Asimov takes the reader on a rousing mental trip into the world of mathematics, physics, chemistry, biology, and astronomy.

The Little Book of Cosmology


Lyman Page - 2020
    Written by one of the world's leading experimental cosmologists, this short but deeply insightful book describes what scientists are revealing through precise measurements of the faint thermal afterglow of the Big Bang--known as the cosmic microwave background, or CMB--and how their findings are transforming our view of the cosmos.Blending the latest findings in cosmology with essential concepts from physics, Lyman Page first helps readers to grasp the sheer enormity of the universe, explaining how to understand the history of its formation and evolution in space and time. Then he sheds light on how spatial variations in the CMB formed, how they reveal the age, size, and geometry of the universe, and how they offer a blueprint for the formation of cosmic structure.Not only does Page explain current observations and measurements, he describes how they can be woven together into a unified picture to form the Standard Model of Cosmology. Yet much remains unknown, and this incisive book also describes the search for ever deeper knowledge at the field's frontiers--from quests to understand the nature of neutrinos and dark energy to investigations into the physics of the very early universe.

Quantum Field Theory for the Gifted Amateur


Tom Lancaster - 2014
    Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in detail. Using numerous worked examples, diagrams, and careful physically motivated explanations, this book will smooth the path towards understanding the radically different and revolutionary view of the physical world that quantum field theory provides, and which all physicists should have the opportunity to experience.To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/ad....

Quantum Theory


David Bohm - 1951
    Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.

The 4% Universe: Dark Matter, Dark Energy, and the Race to Discover the Rest of Reality


Richard Panek - 2010
      In the past few years, a handful of scientists have been in a race to explain a disturbing aspect of our universe: only 4 percent of it consists of the matter that makes up you, me, our books, and every planet, star, and galaxy. The rest—96 percent of the universe—is completely unknown.   Richard Panek tells the dramatic story of how scientists reached this conclusion, and what they’re doing to find this "dark" matter and an even more bizarre substance called dark energy. Based on in-depth, on-site reporting and hundreds of interviews—with everyone from Berkeley’s feisty Saul Perlmutter and Johns Hopkins’s meticulous Adam Riess to the quietly revolutionary Vera Rubin—the book offers an intimate portrait of the bitter rivalries and fruitful collaborations, the eureka moments and blind alleys, that have fueled their search, redefined science, and reinvented the universe.

Serving the Reich: The Struggle for the Soul of Physics under Hitler


Philip Ball - 2013
    While some scientists tried to create an Aryan physics that excluded any ‘Jewish ideas’, many others made compromises and concessions as they continued to work under the Nazi regime. Among them were three world-renowned physicists:Max Planck, pioneer of quantum theory, regarded it as his moral duty to carry on under the regime.Peter Debye, a Dutch physicist, rose to run the Reich’s most important research institute before leaving for the United States in 1940.Werner Heisenberg, discovered the Uncertainty Principle, and became the leading figure in Germany’s race for the atomic bomb.After the war most scientists in Germany maintained they had been apolitical or even resisted the regime: Debye claimed that he had gone to America to escape Nazi interference in his research; Heisenberg and others argued that they had deliberately delayed production of the atomic bomb.Mixing history, science and biography, Serving the Reich is a gripping exploration of moral choices under a totalitarian regime. Here are human dilemmas, failures to take responsibility, three lives caught between the idealistic goals of science and a tyrannical ideology.

Force of Nature: The Life of Linus Pauling


Thomas Hager - 1995
    He decried the internment of Japanese-Americans in World War Two, agitated against nuclear weapons, promoted vitamin C as a cure for the common cold and researched the idea of DNA.