Elements of Programming


Alexander Stepanov - 2009
    And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.

R Graphics Cookbook: Practical Recipes for Visualizing Data


Winston Chang - 2012
    Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you're ready to get started.Use R's default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphing

R Programming for Data Science


Roger D. Peng - 2015
    

Numerical Optimization


Jorge Nocedal - 2000
    One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

An Introduction to Genetic Algorithms


Melanie Mitchell - 1996
    This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Object-Oriented Software Construction (Book/CD-ROM)


Bertrand Meyer - 1988
    A whole generation was introduced to object technology through the first edition of this book. This long-awaited new edition retains the qualities of clarity, practicality and scholarship that made the first an instant bestseller, but has been thoroughly revised and expanded.Among the new topics covered in depth are: concurrency, distribution, client/server and the Internet, object-oriented databases, design by contract, fundamental design patterns, finding classes, the use and misuse of inheritance, abstract data types, and typing issues. The book also includes completely updated discussions of reusability, modularity, software quality, object-oriented languages, memory management, and many other essential topics.

HBase: The Definitive Guide


Lars George - 2011
    As the open source implementation of Google's BigTable architecture, HBase scales to billions of rows and millions of columns, while ensuring that write and read performance remain constant. Many IT executives are asking pointed questions about HBase. This book provides meaningful answers, whether you’re evaluating this non-relational database or planning to put it into practice right away. Discover how tight integration with Hadoop makes scalability with HBase easier Distribute large datasets across an inexpensive cluster of commodity servers Access HBase with native Java clients, or with gateway servers providing REST, Avro, or Thrift APIs Get details on HBase’s architecture, including the storage format, write-ahead log, background processes, and more Integrate HBase with Hadoop's MapReduce framework for massively parallelized data processing jobs Learn how to tune clusters, design schemas, copy tables, import bulk data, decommission nodes, and many other tasks

Laravel: Code Bright


Dayle Rees - 2013
    At $29 and cheaper than a good pizza, you will get the book in its current partial form, along with all future chapters, updates, and fixes for free. As of the day I wrote this description, Code Bright had 130 pages and was just getting started. To give you some perspective on how detailed it is, Code Happy was 127 pages in its complete state. Want to know more? Carry on reading.Welcome back to Laravel. Last year I wrote a book about the Laravel PHP framework. It started as a collection of tutorials on my blog, and eventually became a full book. I definitely didn’t expect it to be as popular as it was. Code Happy has sold almost 3000 copies, and is considered to be one of the most valuable resourcesfor learning the Laravel framework.Code Bright is the spiritual successor to Code Happy. The framework has grown a lot in the past year, and has changed enough to merit a new title. With Code Bright I hope to improve on Code Happy with every way, my goal is, to once again, build the most comprehensive learning experience for the framework. Oh, and to still be funny. That’s very important to me.Laravel Code Bright will contain a complete learning experience for all of the framework’s features. The style of writing will make it approachable for beginners, and a wonderful reference resource for experienced developers alike.You see, people have told me that they enjoyed reading Code Happy, not only for its educational content, but for its humour, and for my down to earth writing style. This is very important to me. I like to write my books as if we were having a conversation in a bar.When I wrote Code Happy last year, I was simply a framework enthusiast. One of the first to share information about the framework. However, since then I have become a committed member of the core development team. Working directly with the framework author to make Laravel a wonderful experience for the developers of the world.One other important feature of both books, is that they are published while in progress. This means that the book is available in an incomplete state, but will grow over time into a complete title. All future updates will be provided for free.What this means is that I don’t have to worry about deadlines, or a fixed point of completion. It leads to less stress and better writing. If I think of a better way to explain something, I can go back and change it. In a sense, the book will never be completed. I can constantly add more information to it, until it becomes the perfect resource.Given that this time I am using the majority of my spare time to write the title (yes, I have a full time job too!), I have raised the price a little to justify my invested time. I was told by many of my past readers that they found the previous title very cheap for the resource that it grew into, so if you are worried about the new price, then let me remind you what you will get for your 29 bucks.The successor to Code Happy, seen by many as the #1 learning resource for the Laravel PHP framework.An unending source of information, chapters will be constantly added as needed until the book becomes a giant vault of framework knowledge.Comedy, and a little cheesy, but very friendly writing.

Core Java, Volume II--Advanced Features


Cay S. Horstmann - 1999
    It contains sample programs to illustrate practical solutions to the type of real-world problems professional developers encounter.

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

The REST API Design Handbook


George Reese - 2012
    The RESTful approach to web services design is rapidly become the approach of choice. Unfortunately, too few people have truly solid REST API design skills, and discussions of REST can become bogged down in dry theory.The REST API Design Handbook is a simple, practical guide to aid software engineers and software architects create lasting, scalable APIs based on REST architectural principles. The book provides a sound foundation in discussing the constraints that define a REST API. It quickly goes beyond that into the practical aspects of implementing such an API in the real world.Written by cloud computing expert George Reese, The REST API Design Handbook reflects hands on work in consuming many different third party APIs as well the development of REST-based web services APIs. It addresses all of the debates the commonly arise while creating these APIs. Subjects covered include:* REST architectural constraints* Using HTTP methods and response codes in an API* Authenticating RESTful API calls* Versioning* Asynchronous Operations* Pagination and Streaming* Polling and Push Notifications* Rate Limiting

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Probabilistic Robotics


Sebastian Thrun - 2005
    Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.