Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Technology Strategy Patterns: Architecture as Strategy


Eben Hewitt - 2018
    This book’s toolkit provides architects, product managers, technology managers, and executives with a shared language—in the form of repeatable, practical patterns and templates—to produce great technology strategies. Author Eben Hewitt developed 39 patterns over the course of a decade in his work as CTO, CIO, and chief architect for several global tech companies. With these proven tools, you can define, create, elaborate, refine, and communicate your architecture goals, plans, and approach in a way that executives can readily understand, approve, and execute. This book covers: Architecture and strategy: Adopt a strategic architectural mindset to make a meaningful material impact Creating your strategy: Define the components of your technology strategy using proven patterns Communicating the strategy: Convey your technology strategy in a compelling way to a variety of audiences Bringing it all together: Employ patterns individually or in clusters for specific problems; use the complete framework for a comprehensive strategy

Reactive Design Patterns


Roland Kuhn - 2014
    The Reactive Application model addresses these demands through new patterns designed to "react" effectively to user and system events, changes in load, competition for shared system resources, and unanticipated failures. Although reactive design patterns can be implemented using standard enterprise development tools, you best realize the benefits when you pair them with a functional programming language like Scala and an Actor-based concurrency system like Akka.Reactive Design Patterns is a clearly-written guide for building event-driven distributed systems that are resilient, responsive, and scalable. Written by the authors of the Reactive Manifesto, this book teaches you to apply reactive design principles to the real problems of distributed application development. You'll discover technologies and paradigms that can be used to build reactive applications including Akka and other actor-based systems, functional programming, replication and distribution, and implementation techniques such as futures, iteratees, and reactive streams. While the book presents concrete examples in Scala, Java, JavaScript, and Erlang, the primary goal is to introduce patterns and best practices that you can use to apply reactive principles to common problems you'll face when building distributed systems.WHAT'S INSIDE* Discover best practices and patterns for building responsive applications* Build applications that can withstand hardware or software failure at any level* Patterns for fault tolerance, scalability, and responsiveness* Maximize multicore hardware using asynchronous and event-driven solutions* Scale applications under tremendous loadReaders should be familiar with a standard programming language like Java, C++ or C# and be comfortable with the basics of distributed systems. Software engineers and architects will learn how to avoid common pitfalls and apply patterns for solving day-to-day problems in a fault-tolerant and scalable way to maximize their application's responsiveness to users and clients. Project leaders and CTOs will gain a deeper understanding of the philosophy behind resilience and scalability in distributed systems, as well as their limitations, challenges and benefits.

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University

Learning SQL


Alan Beaulieu - 2005
    If you're working with a relational database--whether you're writing applications, performing administrative tasks, or generating reports--you need to know how to interact with your data. Even if you are using a tool that generates SQL for you, such as a reporting tool, there may still be cases where you need to bypass the automatic generation feature and write your own SQL statements.To help you attain this fundamental SQL knowledge, look to "Learning SQL," an introductory guide to SQL, designed primarily for developers just cutting their teeth on the language."Learning SQL" moves you quickly through the basics and then on to some of the more commonly used advanced features. Among the topics discussed: The history of the computerized databaseSQL Data Statements--those used to create, manipulate, and retrieve data stored in your database; example statements include select, update, insert, and deleteSQL Schema Statements--those used to create database objects, such as tables, indexes, and constraintsHow data sets can interact with queriesThe importance of subqueriesData conversion and manipulation via SQL's built-in functionsHow conditional logic can be used in Data StatementsBest of all, "Learning SQL" talks to you in a real-world manner, discussing various platform differences that you're likely to encounter and offering a series of chapter exercises that walk you through the learning process. Whenever possible, the book sticks to the features included in the ANSI SQL standards. This means you'll be able to apply what you learn to any of several different databases; the book covers MySQL, Microsoft SQL Server, and Oracle Database, but the features and syntax should apply just as well (perhaps with some tweaking) to IBM DB2, Sybase Adaptive Server, and PostgreSQL.Put the power and flexibility of SQL to work. With "Learning SQL" you can master this important skill and know that the SQL statements you write are indeed correct.

Streaming Systems


Tyler Akidau - 2018
    As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way.Expanded from Tyler Akidau's popular blog posts Streaming 101 and Streaming 102, this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You'll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax.You'll explore:How streaming and batch data processing patterns compareThe core principles and concepts behind robust out-of-order data processingHow watermarks track progress and completeness in infinite datasetsHow exactly-once data processing techniques ensure correctnessHow the concepts of streams and tables form the foundations of both batch and streaming data processingThe practical motivations behind a powerful persistent state mechanism, driven by a real-world exampleHow time-varying relations provide a link between stream processing and the world of SQL and relational algebra

Righting Software


Juval Lowy - 2019
    Although companies of every kind have successfully implemented his original design ideas across hundreds of systems, these insights have never before appeared in print.Based on first principles in software engineering and a comprehensive set of matching tools and techniques, Löwy's methodology integrates system design and project design. First, he describes the primary area where many software architects fail and shows how to decompose a system into smaller building blocks or services, based on volatility. Next, he shows how to flow an effective project design from the system design; how to accurately calculate the project duration, cost, and risk; and how to devise multiple execution options.The method and principles in Righting Software apply regardless of your project and company size, technology, platform, or industry. Löwy starts the reader on a journey that addresses the critical challenges of software development today by righting software systems and projects as well as careers-and possibly the software industry as a whole. Software professionals, architects, project leads, or managers at any stage of their career will benefit greatly from this book, which provides guidance and knowledge that would otherwise take decades and many projects to acquire. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Computer Science Distilled: Learn the Art of Solving Computational Problems


Wladston Ferreira Filho - 2017
    Designed for readers who don't need the academic formality, it's a fast and easy computer science guide. It teaches essential concepts for people who want to program computers effectively. First, it introduces discrete mathematics, then it exposes the most common algorithms and data structures. It also shows the principles that make computers and programming languages work.

Learning Perl


Randal L. Schwartz - 1993
    Written by three prominent members of the Perl community who each have several years of experience teaching Perl around the world, this edition has been updated to account for all the recent changes to the language up to Perl 5.8.Perl is the language for people who want to get work done. It started as a tool for Unix system administrators who needed something powerful for small tasks. Since then, Perl has blossomed into a full-featured programming language used for web programming, database manipulation, XML processing, and system administration--on practically all platforms--while remaining the favorite tool for the small daily tasks it was designed for. You might start using Perl because you need it, but you'll continue to use it because you love it.Informed by their years of success at teaching Perl as consultants, the authors have re-engineered the Llama to better match the pace and scope appropriate for readers getting started with Perl, while retaining the detailed discussion, thorough examples, and eclectic wit for which the Llama is famous.The book includes new exercises and solutions so you can practice what you've learned while it's still fresh in your mind. Here are just some of the topics covered:Perl variable typessubroutinesfile operationsregular expressionstext processingstrings and sortingprocess managementusing third party modulesIf you ask Perl programmers today what book they relied on most when they were learning Perl, you'll find that an overwhelming majority will point to the Llama. With good reason. Other books may teach you to program in Perl, but this book will turn you into a Perl programmer.

Architecting for Scale: High Availability for Your Growing Applications


Lee Atchison - 2016
    As traffic volume and data demands increase, these applications become more complicated and brittle, exposing risks and compromising availability. This practical guide shows IT, devops, and system reliability managers how to prevent an application from becoming slow, inconsistent, or downright unavailable as it grows.Scaling isn't just about handling more users; it's also about managing risk and ensuring availability. Author Lee Atchison provides basic techniques for building applications that can handle huge quantities of traffic, data, and demand without affecting the quality your customers expect.In five parts, this book explores:Availability: learn techniques for building highly available applications, and for tracking and improving availability going forwardRisk management: identify, mitigate, and manage risks in your application, test your recovery/disaster plans, and build out systems that contain fewer risksServices and microservices: understand the value of services for building complicated applications that need to operate at higher scaleScaling applications: assign services to specific teams, label the criticalness of each service, and devise failure scenarios and recovery plansCloud services: understand the structure of cloud-based services, resource allocation, and service distribution

Reversing: Secrets of Reverse Engineering


Eldad Eilam - 2005
    The book is broken into two parts, the first deals with security-related reverse engineering and the second explores the more practical aspects of reverse engineering. In addition, the author explains how to reverse engineer a third-party software library to improve interfacing and how to reverse engineer a competitor's software to build a better product. * The first popular book to show how software reverse engineering can help defend against security threats, speed up development, and unlock the secrets of competitive products * Helps developers plug security holes by demonstrating how hackers exploit reverse engineering techniques to crack copy-protection schemes and identify software targets for viruses and other malware * Offers a primer on advanced reverse-engineering, delving into disassembly-code-level reverse engineering-and explaining how to decipher assembly language

The Art of Invisibility: The World's Most Famous Hacker Teaches You How to Be Safe in the Age of Big Brother and Big Data


Kevin D. Mitnick - 2017
    Consumer's identities are being stolen, and a person's every step is being tracked and stored. What once might have been dismissed as paranoia is now a hard truth, and privacy is a luxury few can afford or understand.In this explosive yet practical book, Kevin Mitnick illustrates what is happening without your knowledge--and he teaches you "the art of invisibility." Mitnick is the world's most famous--and formerly the Most Wanted--computer hacker. He has hacked into some of the country's most powerful and seemingly impenetrable agencies and companies, and at one point he was on a three-year run from the FBI. Now, though, Mitnick is reformed and is widely regarded as the expert on the subject of computer security. He knows exactly how vulnerabilities can be exploited and just what to do to prevent that from happening. In THE ART OF INVISIBILITY Mitnick provides both online and real life tactics and inexpensive methods to protect you and your family, in easy step-by-step instructions. He even talks about more advanced "elite" techniques, which, if used properly, can maximize your privacy. Invisibility isn't just for superheroes--privacy is a power you deserve and need in this modern age.

Kubernetes: Up & Running


Kelsey Hightower - 2016
    How's that possible? Google revealed the secret through a project called Kubernetes, an open source cluster orchestrator (based on its internal Borg system) that radically simplifies the task of building, deploying, and maintaining scalable distributed systems in the cloud. This practical guide shows you how Kubernetes and container technology can help you achieve new levels of velocity, agility, reliability, and efficiency.Authors Kelsey Hightower, Brendan Burns, and Joe Beda--who've worked on Kubernetes at Google--explain how this system fits into the lifecycle of a distributed application. You will learn how to use tools and APIs to automate scalable distributed systems, whether it is for online services, machine-learning applications, or a cluster of Raspberry Pi computers.Explore the distributed system challenges that Kubernetes addressesDive into containerized application development, using containers such as DockerCreate and run containers on Kubernetes, using Docker's Image format and container runtimeExplore specialized objects essential for running applications in productionReliably roll out new software versions without downtime or errorsGet examples of how to develop and deploy real-world applications in Kubernetes

Big Data: Principles and best practices of scalable realtime data systems


Nathan Marz - 2012
    As scale and demand increase, so does Complexity. Fortunately, scalability and simplicity are not mutually exclusive—rather than using some trendy technology, a different approach is needed. Big data systems use many machines working in parallel to store and process data, which introduces fundamental challenges unfamiliar to most developers.Big Data shows how to build these systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy to understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to use them in practice, and how to deploy and operate them once they're built.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.