Book picks similar to
Numbers and Geometry by John Stiilwell
algebra
computer-science
geometry
machine-learning
Elementary Solid State Physics: Principles and Applications
M. Ali Omar - 1975
I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.
Forecasting: Principles and Practice
Rob J. Hyndman - 2013
Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.
The Lifebox, the Seashell, and the Soul: What Gnarly Computation Taught Me About Ultimate Reality, the Meaning of Life, and How to Be Happy
Rudy Rucker - 2005
This concept is at the root of the computational worldview, which basically says that very complex systems — the world we live in — have their beginnings in simple mathematical equations. We've lately come to understand that such an algorithm is only the start of a never-ending story — the real action occurs in the unfolding consequences of the rules. The chip-in-a-box computers so popular in our time have acted as a kind of microscope, letting us see into the secret machinery of the world. In Lifebox, Rucker uses whimsical drawings, fables, and humor to demonstrate that everything is a computation — that thoughts, computations, and physical processes are all the same. Rucker discusses the linguistic and computational advances that make this kind of "digital philosophy" possible, and explains how, like every great new principle, the computational world view contains the seeds of a next step.
Fuzzy Logic: The Revolutionary Computer Technology That Is Changing Our World
Daniel McNeill - 1993
Professor Lofti Zadeh masterminded "fuzzy logic"--a way of programming computers to "make decisions" bases on imprecise data and complex situations. In "Fuzzy Logic," Daniel McNeill and Paul Freiberger relate the compelling tale of this remarkable new technology, the genius who brought it to life, and how it will soon affect the lives of every one of us.
The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics
John Sammons - 2011
This book teaches you how to conduct examinations by explaining what digital forensics is, the methodologies used, key technical concepts and the tools needed to perform examinations. Details on digital forensics for computers, networks, cell phones, GPS, the cloud, and Internet are discussed. Readers will also learn how to collect evidence, document the scene, and recover deleted data. This is the only resource your students need to get a jump-start into digital forensics investigations.This book is organized into 11 chapters. After an introduction to the basics of digital forensics, the book proceeds with a discussion of key technical concepts. Succeeding chapters cover labs and tools; collecting evidence; Windows system artifacts; anti-forensics; Internet and email; network forensics; and mobile device forensics. The book concludes by outlining challenges and concerns associated with digital forensics. PowerPoint lecture slides are also available.This book will be a valuable resource for entry-level digital forensics professionals as well as those in complimentary fields including law enforcement, legal, and general information security.
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
Peter Dayan - 2001
This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.
Alan Turing: The Enigma
Andrew Hodges - 1983
His breaking of the German U-boat Enigma cipher in World War II ensured Allied-American control of the Atlantic. But Turing's vision went far beyond the desperate wartime struggle. Already in the 1930s he had defined the concept of the universal machine, which underpins the computer revolution. In 1945 he was a pioneer of electronic computer design. But Turing's true goal was the scientific understanding of the mind, brought out in the drama and wit of the famous "Turing test" for machine intelligence and in his prophecy for the twenty-first century.Drawn in to the cockpit of world events and the forefront of technological innovation, Alan Turing was also an innocent and unpretentious gay man trying to live in a society that criminalized him. In 1952 he revealed his homosexuality and was forced to participate in a humiliating treatment program, and was ever after regarded as a security risk. His suicide in 1954 remains one of the many enigmas in an astonishing life story.
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
How the Brain Learns Mathematics
David A. Sousa - 2007
Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points
The Eudaemonic Pie
Thomas A. Bass - 1985
“The result is a veritable pi
Introduction to Probability
Dimitri P. Bertsekas - 2002
This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
Algebra
Michael Artin - 1991
Linear algebra is tightly integrated into the text.
Linear Algebra
Georgi E. Shilov - 1971
Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.
Bayesian Reasoning and Machine Learning
David Barber - 2012
They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
Quantitative Aptitude for Competitive Examinations
R.S. Aggarwal - 2017
The item is Brand New Paperback International/South Asian Edition textbook with 100 % identical Contents as US Edition. Shipped Same Day. Will be dispatched fast. 100% Satisfaction. Great Customer Service, Buy with Confidence, Front Cover May Differ. Ships to PO or APO. May have printed "NOT FOR SALE OUTSIDE of INDIA" or Territorial Disclaimer.