Algebraic Topology


Allen Hatcher - 2001
    This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Abstract Algebra


David S. Dummit - 1900
    This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.

Mostly Harmless Econometrics: An Empiricist's Companion


Joshua D. Angrist - 2008
    In the modern experimentalist paradigm, these techniques address clear causal questions such as: Do smaller classes increase learning? Should wife batterers be arrested? How much does education raise wages? Mostly Harmless Econometrics shows how the basic tools of applied econometrics allow the data to speak.In addition to econometric essentials, Mostly Harmless Econometrics covers important new extensions--regression-discontinuity designs and quantile regression--as well as how to get standard errors right. Joshua Angrist and Jorn-Steffen Pischke explain why fancier econometric techniques are typically unnecessary and even dangerous. The applied econometric methods emphasized in this book are easy to use and relevant for many areas of contemporary social science.An irreverent review of econometric essentials A focus on tools that applied researchers use most Chapters on regression-discontinuity designs, quantile regression, and standard errors Many empirical examples A clear and concise resource with wide applications

Category Theory for Programmers


Bartosz Milewski - 2014
    Collected from the series of blog posts starting at: https://bartoszmilewski.com/2014/10/2...Hardcover available at: http://www.blurb.com/b/9008339-catego...

CK-12 Calculus


CK-12 Foundation - 2010
    Topics include: Limits, Derivatives, and Integrations.

Calculus with Analytic Geometry


Earl W. Swokowski - 1979
    

The Colossal Book of Short Puzzles and Problems


Martin Gardner - 2005
    His yearly gatherings of short and inventive problems were easily his most anticipated math columns. Loyal readers would savor the wit and elegance of his explorations in physics, probability, topology, and chess, among others. Grouped by subject and arrayed from easiest to hardest, the puzzles gathered here, which complement the lengthier, more involved problems in The Colossal Book of Mathematics, have been selected by Gardner for their illuminating; and often bewildering; solutions. Filled with over 300 illustrations, this new volume even contains nine new mathematical gems that Gardner, now ninety, has been gathering for the last decade. No amateur or expert math lover should be without this indispensable volume; a capstone to Gardner's seventy-year career.

Numerical Recipes: The Art of Scientific Computing


William H. Press - 2007
    Widely recognized as the most comprehensive, accessible and practical basis for scientific computing, this new edition incorporates more than 400 Numerical Recipes routines, many of them new or upgraded. The executable C++ code, now printed in color for easy reading, adopts an object-oriented style particularly suited to scientific applications. The whole book is presented in the informal, easy-to-read style that made earlier editions so popular. Please visit www.nr.com or www.cambridge.org/us/numericalrecipes for more details. More information concerning licenses is available at: www.nr.com/licenses New key features: 2 new chapters, 25 new sections, 25% longer than Second Edition Thorough upgrades throughout the text Over 100 completely new routines and upgrades of many more. New Classification and Inference chapter, including Gaussian mixture models, HMMs, hierarchical clustering, Support Vector MachinesNew Computational Geometry chapter covers KD trees, quad- and octrees, Delaunay triangulation, and algorithms for lines, polygons, triangles, and spheres New sections include interior point methods for linear programming, Monte Carlo Markov Chains, spectral and pseudospectral methods for PDEs, and many new statistical distributions An expanded treatment of ODEs with completely new routines Plus comprehensive coverage of linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations, and inverse theory

Calculus, Better Explained: A Guide To Developing Lasting Intuition


Kalid Azad - 2015
     Learn the essential concepts using concrete analogies and vivid diagrams, not mechanical definitions. Calculus isn't a set of rules, it's a specific, practical viewpoint we can apply to everyday thinking. Frustrated With Abstract, Mechanical Lessons? I was too. Despite years of classes, I didn't have a strong understanding of calculus concepts. Sure, I could follow mechanical steps, but I had no lasting intuition. The classes I've seen are too long, taught in the wrong order, and without solid visualizations. Here's how this course is different: 1) It gets to the point. A typical class plods along, saving concepts like Integrals until Week 8. I want to see what calculus can offer by Minute 8. Each compact, tightly-written lesson can be read in 15 minutes. 2) Concepts are taught in their natural order. Most classes begin with the theory of limits, a technical concept discovered 150 years after calculus was invented. That's like putting a new driver into a Formula-1 racecar on day 1. We can begin with the easy-to-grasp concepts discovered 2000 years ago. 3) It has vivid analogies and visualizations. Calculus is usually defined as the "study of change"... which sounds like history or geology. Instead of an abstract definition, we'll see calculus a step-by-step viewpoint to explore patterns. 4) It's written by a human, for humans. I'm not a haughty professor or strict schoolmarm. I'm a friend who saw a fun way to internalize some difficult ideas. This course is a chat over coffee, not a keep-your-butt-in-your-seat lecture. The goal is to help you grasp the Aha! moments behind calculus in hours, not a painful semester (or a decade, in my case). Join Thousands Of Happy Readers Here's a few samples of anonymous feedback as people went through the course. The material covers a variety of levels, whether you're looking for intuitive appreciation or the specifics of the rules. "I've done all of this stuff before, and I do understand calculus intuitively, but this was the most fun I've had going through this kind of thing. The informal writing and multitude of great analogies really helps this become an enjoyable read and the rest is simple after that - you make this seem easy, but at the same time, you aren't doing it for us…This is what math education is supposed to be like :)" "I have psychology and medicine background so I relate your ideas to my world. To me the most useful idea was what each circle production feels like. Rings are natural growth…Slices are automatable chunks and automation cheapens production… Boards in the shape on an Arch are psychologically most palatable for work (wind up, hard part, home stretch). Brilliant and kudos, from one INTP to another." "I like how you're introducing both derivatives and integrals at the same time - it's really helps with understanding the relationship between them. Also, I appreciate how you're coming from such a different angle than is traditionally taken - it's always interesting to see where you decide to go next." "That was breathtaking. Seriously, mail my air back please, I've grown used to it. Beautiful work, thank you. Lesson 15 was masterful. I am starting to feel calculus. "d/dx is good" (sorry, couldn't resist!)."

Combinatorial Optimization: Algorithms and Complexity


Christos H. Papadimitriou - 1998
    All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Discovering Statistics Using SPSS (Introducing Statistical Methods)


Andy Field - 2000
    What's new in the Second Edition? 1. Fully compliant with the latest version of SPSS version 12 2. More coverage of advanced statistics including completely new coverage of non-parametric statistics. The book is 50 per cent longer than the First Edition. 3. Each section of each chapter now has a notation - 1,2 or 3 - referring to the intended level of study. This helps students navigate their way through the book and makes it user-friendly for students of ALL levels. 4. Has a 'how to use this book' section at the start of the text. 5. Characters in each chapter have defined roles - summarizing key points, to pose questions etc 6. Each chapter now has several examples for students to work through. Answers provided on the enclosed CD-ROM

Elementary Statistics: Picturing the World


Ron Larson - 2002
    Offering an approach with a visual/graphical emphasis, this text offers a number of examples on the premise that students learn best by doing. This book features an emphasis on interpretation of results and critical thinking over calculations.