Book picks similar to
Algorithms for Decision Making by Mykel J Kochenderfer


programming
meta-cognition
non-fiction
computer-science

C# 4.0 in a Nutshell


Joseph Albahari - 2010
    It is a book I recommend." --Scott Guthrie, Corporate Vice President, .NET Developer Platform, Microsoft Corporation "A must-read for a concise but thorough examination of the parallel programming features in the .NET Framework 4." --Stephen Toub, Parallel Computing Platform Program Manager, Microsoft "This wonderful book is a great reference for developers of all levels." -- Chris Burrows, C# Compiler Team, Microsoft When you have questions about how to use C# 4.0 or the .NET CLR, this highly acclaimed bestseller has precisely the answers you need. Uniquely organized around concepts and use cases, this fourth edition includes in-depth coverage of new C# topics such as parallel programming, code contracts, dynamic programming, security, and COM interoperability. You'll also find updated information on LINQ, including examples that work with both LINQ to SQL and Entity Framework. This book has all the essential details to keep you on track with C# 4.0. Get up to speed on C# language basics, including syntax, types, and variables Explore advanced topics such as unsafe code and preprocessor directives Learn C# 4.0 features such as dynamic binding, type parameter variance, and optional and named parameters Work with .NET 4's rich set of features for parallel programming, code contracts, and the code security model Learn .NET topics, including XML, collections, I/O and networking, memory management, reflection, attributes, security, and native interoperability

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Professional ASP.NET MVC 5


Jon Galloway - 2013
    Like previous versions, this guide shows you step-by-step techniques on using MVC to best advantage, with plenty of practical tutorials to illustrate the concepts. It covers controllers, views, and models; forms and HTML helpers; data annotation and validation; membership, authorization, and security.MVC 5, the latest version of MVC, adds sophisticated features such as single page applications, mobile optimization, and adaptive rendering A team of top Microsoft MVP experts, along with visionaries in the field, provide practical advice on basic and advanced MVC topics Covers controllers, views, models, forms, data annotations, authorization and security, Ajax, routing, ASP.NET web API, dependency injection, unit testing, real-world application, and much more Professional ASP.NET MVC 5 is the comprehensive resource you need to make the best use of the updated Model-View-Controller technology.

Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms


Nikhil Buduma - 2015
    

Networks: An Introduction


M.E.J. Newman - 2010
    The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.

Computer Networks and Internets [With CDROM and Companion Website Access Code Card]


Douglas E. Comer - 1996
    Leading networking authority Douglas Comer presents a wide-ranging, self-contained tour of the concepts, principles, and technologies that enable today's Internet to support applications ranging from web browsing to telephony and multimedia. This Fifth Edition has been thoroughly reorganized, revised, and updated: it includes extensive new coverage of topics ranging from wireless protocols to network performance, while reducing or eliminating coverage of older protocols and technologies. Comer begins by illuminating the applications and facilities offered by today's Internet. Next, he systematically introduces the underlying network technologies and protocols that make them possible: low-level data communications; packet switching, LAN, and WAN technologies; and Internet protocols such as TCP, IP, UDP, and IPv6. With these concepts and technologies established, he introduces several of the most important contemporary issues faced by network implementers and managers, including quality of service, Internet telephony, multimedia, network security, and network management. Comer has carefully designed this book to support both top-down and bottom-up teaching approaches. Students need no background in operating systems, and no sophisticated math: Comer relies throughout on figures, drawings, examples, and analogies, "not" mathematical proofs.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.

Machine Learning in Action


Peter Harrington - 2011
    "Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.

Training Kit (Exam 70-461): Querying Microsoft SQL Server 2012


Itzik Ben-Gan - 2012
    Work at your own pace through a series of lessons and practical exercises, and then assess your skills with practice tests on CD—featuring multiple, customizable testing options.Maximize your performance on the exam by learning how to:Create database objectsWork with dataModify dataTroubleshoot and optimize queriesYou also get an exam discount voucher—making this book an exceptional value and a great career investment.

SOA: Principles of Service Design


Thomas Erl - 2007
    It is through an understanding of service design that truly service-oriented solution logic can be created in support of achieving the strategic goals associated with SOA and service-oriented computing. Bestselling SOA author Thomas Erl guides you through a comprehensive, insightful, and visually rich exploration of the service-orientation design paradigm, revealing exactly how services should and should not be designed for real-world SOA. concise introduction to SOA and service-oriented computing concepts and benefits* A thorough exploration of the service-orientation design paradigm as represented by eight specific design principles* A comparison of service-oriented and object-oriented concepts and principles and a clear definition of what qualifies as service-oriented logic* Detailed coverage of four different forms of service-related design granularity* An exhaustive examination of service contracts, with an emphasis on standardization, abstraction, and the utilization of WS-Policy, XML Schema, and WSDL definitions* A comprehensive study of various forms of service-related coupling with an emphasis on the requirements to attaining a suitable level of loose coupling.* achieve truly agnostic and reusable service logic* Techniques for maximizing service reliability, scalability, and performance by instilling high levels of autonomy and emphasizing stateless design* Approaches for positioning services as highly discoverable and interpretable enterprise resources* Unprecedented coverage of how to design services for participation in complex compositions* The definition of concrete links between each design principle and the strategic goals and benefits of SOA and service-oriented computing* Numerous cross-references to key design patterns documented separately in SOA: Design Patterns www.soabooks.com supplements this book with a variety of resources, including content updates, corrections, and sample chapters from other books. www.soaspecs.com provides further support by establishing a descriptive portal to industry specifications referenced in all of the series titles. www.soaglossary.com establishes a master glossary for all SOA titles in this series. www.prenhallprofessional.comwww.soabo... Foreword Chapter 1: OverviewChapter 2: Case Study Background Pa

Data Jujitsu: The Art of Turning Data into Product


D.J. Patil - 2012
    Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to:Break down seemingly complex data problems into simplified partsUse alternative data analysis techniques to examine themUse human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.

The Hitchhiker's Guide to Python: Best Practices for Development


Kenneth Reitz - 2016
    More than any other language, Python was created with the philosophy of simplicity and parsimony. Now 25 years old, Python has become the primary or secondary language (after SQL) for many business users. With popularity comes diversity--and possibly dilution.This guide, collaboratively written by over a hundred members of the Python community, describes best practices currently used by package and application developers. Unlike other books for this audience, The Hitchhiker's Guide is light on reusable code and heavier on design philosophy, directing the reader to excellent sources that already exist.

Learning Python


Mark Lutz - 2003
    Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.