Book picks similar to
The Electric Life of Michael Faraday by Alan W. Hirshfeld
biography
science
non-fiction
physics
Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking
William H. Cropper - 2001
William H. Cropper vividly portrays the life and accomplishments of such giants as Galileo and Isaac Newton, Marie Curie and Ernest Rutherford, Albert Einstein and NielsBohr, right up to contemporary figures such as Richard Feynman, Murray Gell-Mann, and Stephen Hawking. We meet scientists--all geniuses--who could be gregarious, aloof, unpretentious, friendly, dogged, imperious, generous to colleagues or contentious rivals. As Cropper captures their personalities, he also offers vivid portraits of their great moments of discovery, their bitter feuds, their relations with family and friends, their religious beliefs and education. In addition, Cropper has grouped these biographies by discipline--mechanics, thermodynamics, particle physics, and others--eachsection beginning with a historical overview. Thus in the section on quantum mechanics, readers can see how the work of Max Planck influenced Niels Bohr, and how Bohr in turn influenced Werner Heisenberg.Our understanding of the physical world has increased dramatically in the last four centuries. With Great Physicists, readers can retrace the footsteps of the men and women who led the way.
Journey through Genius: The Great Theorems of Mathematics
William Dunham - 1990
Now William Dunham gives them the attention they deserve.Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creator — from Archimedes, the absentminded theoretician whose absorption in his work often precluded eating or bathing, to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures, to the paranoid genius of modern times, Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics.A rare combination of the historical, biographical, and mathematical, Journey Through Genius is a fascinating introduction to a neglected field of human creativity.
What Is Life? with Mind and Matter and Autobiographical Sketches
Erwin Schrödinger - 1944
The book was based on a course of public lectures delivered by Schrödinger in February 1943 at Trinity College, Dublin. Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?" In the book, Schrödinger introduced the idea of an "aperiodic crystal" that contained genetic information in its configuration of covalent chemical bonds. In the 1950s, this idea stimulated enthusiasm for discovering the genetic molecule and would give both Francis Crick and James Watson initial inspiration in their research.
The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science
Richard Holmes - 2008
It has been inspired by the scientific ferment that swept through Britain at the end of the 18th century, and which Holmes now radically redefines as 'the revolution of Romantic Science'.
"Surely You're Joking, Mr. Feynman!": Adventures of a Curious Character
Richard P. Feynman - 1985
Here he recounts in his inimitable voice his experience trading ideas on atomic physics with Einstein and Bohr and ideas on gambling with Nick the Greek; cracking the uncrackable safes guarding the most deeply held nuclear secrets; accompanying a ballet on his bongo drums; painting a naked female toreador. In short, here is Feynman's life in all its eccentric—a combustible mixture of high intelligence, unlimited curiosity, and raging chutzpah.
The Seashell on the Mountaintop: A Story of Science, Sainthood, and the Humble Genius who Discovered a New History of the Earth
Alan Cutler - 2003
It was an ancient puzzle that stymied history's greatest minds: How did the fossils of seashells find their way far inland, sometimes high up into the mountains? Fossils only made sense in a world old enough to form them, and in the seventeenth century, few people could imagine such a thing. Texts no less authoritative than the Old Testament laid out very clearly the timescale of Earth's past; in fact one Anglican archbishop went so far as to calculate the exact date of Creation...October 23, 4004, B.C. A revolution was in the making, however, and it was started by the brilliant and enigmatic Nicholas Steno, the man whom Stephen Jay Gould called "the founder of geology." Steno explored beyond the pages of the Bible, looking directly at the clues left in the layers of the Earth. With his groundbreaking answer to the fossil question, Steno would not only confound the religious and scientific thinking of his own time, he would set the stage for the modern science that came after him. He would open the door to the concept of "deep time," which imagined a world with a history of millions or billions of years. And at the very moment his expansive new ideas began to unravel the Bible's authoritative claim as to the age of the Earth, Steno would enter the priesthood and rise to become a bishop, ultimately becoming venerated as a saint and beatified by the Catholic Church in 1988. Combining a thrilling scientific investigation with world-altering history and the portrait of an extraordinary genius, "The Seashell on the Mountaintop" gives us new insight into the very old planet on which we live, revealing how we learned to read the story told to us by the Earth itself, written in rock and stone.
Mendeleyev's Dream
Paul Strathern - 2001
The story of how we got from there to here is full of fascinating people, and in this elegant, entertaining book, Paul Strathern introduces us to ancient philosophers, medieval alchemists, and the earliest chemists-and to Dimitri Mendeleyev, the card-playing nineteenth-century Russian who claimed that the answers came to him in a dream. "Chemistry has been a neglected area of science writing, and Mendeleyev, the king of chemistry, is a largely forgotten genius. [This book] goes a long way toward correcting this injustice." (Simon Singh, author of Fermat's Last Theorem, in the Sunday Telegraph)
The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth
Paul Hoffman - 1998
Based on a National Magazine Award-winning article, this masterful biography of Hungarian-born Paul Erdos is both a vivid portrait of an eccentric genius and a layman's guide to some of this century's most startling mathematical discoveries.
Reluctant Genius: The Passionate Life and Inventive Mind of Alexander Graham Bell
Charlotte Gray - 2006
Who knew that he also was a pivotal figure in the development of the airplane, the hydrofoil, genetic engineering, and more? Charlotte Gray does, and she tells us how and why she brought to life the passionate mind and heart of the man behind so many amazing ideas and innovations. --Lauren Nemroff
Some Questions for Charlotte Gray
[image] 1. Most people picture Alexander Graham Bell as that grandfatherly looking man with a long white beard who invented the telephone. What's wrong with that image? The image of Alexander Graham Bell as a kindly Santa Claus figure is the one we all know: It is as familiar as the one of Einstein with his hair in a frizzy grey mass. But when Alexander Graham Bell was struggling to invent the telephone, he was a skinny, clean-shaven, neurotically intense young man and a hypochondriac, with obsessive work habits and a very volatile nature. Reading his letters and journals, I was shocked to discover how often he would ricochet between euphoria and depression. Invention was Alexander Graham Bell's passion, but I frequently wondered whether, if he had not had an early success and the right wife, his difficult personality would have prevented him achieving anything. I think it is important to revise the grandfatherly stereotype of Bell in order to show that invention is difficult, and inventors are not easy, placid people to live with. 2. In what way does Bell's genius different from other inventors of his age, such as Thomas Edison or the Wright brothers? The wonderful thing about the inventions of such nineteenth century giants as Bell, Edison and the Wright brothers is that, with a little bit of effort, even those of us who never did Grade 12 physics can actually understand how their inventions worked. One could never say that about today's microelectronic technology. Intuition and imagination were all crucial for the breakthroughs made by Edison, the Wright brothers and Bell. However, what sets Bell apart from Edison and the Wright brothers was that he didn't have an entrepreneurial bone in his body. He was more like a holdover from the eighteenth century Enlightenment, while the others were go-getting twentieth-century hustlers. Edison was always looking for financial backers; he announced his breakthroughs before he had even built working prototypes; he was one of the first inventors to put together a real R and D team at a purpose-built laboratory, at Menlo Park. He understood that invention is, in his own words, "One percent inspiration, ninety percent perspiration." Similarly the Wright Brothers were eager to make money out of their flying machines. They refused to share their technological breakthroughs, guarded their patents fiercely, and wouldn't give any demonstrations to the public of their biplanes. Bell was the opposite--totally absorbed in extending the frontiers of knowledge, and completely careless about commercial exploitation of his ideas. 3. Is it true that "necessity is the mother of invention" or is it something else? Invention has many mothers - the right materials, a widespread understanding that this will improve the world in some way, the right individual to pursue the elusive dream. In the case of the telephone, one can argue that there was no overwhelming necessity for a new form of communication: the telegraph had been working well for 30 years, and only a few people realized that a device that could carry the human voice, rather than the Morse code, would pull people together in a revolutionary way. As soon as telephones appeared in the market, their advantages were obvious. But there was still incredible resistance. In Britain, the upper classes were slow to acquire telephones because they posed a class issue: who should answer them? Everybody knew that, in a house with servants, the servant answered the door when the telegraph boy rang the bell. But should master or servant speak on the phone? The democratic nature of the telephone--anybody could use it, not just qualified operators--also shackled its spread. In Russia after the revolution, Stalin is said to have vetoed the idea of a modern telephone system. "It will unmake our work," the dictator decreed. "No greater instrument for counter-revolution and conspiracy can be imagined." So did necessity drive the invention of the telephone? No--when Bell first started speculating on its impact, people thought he was mad. But it quickly became a total necessity
imagine life without electronic communication today! 4. It was amazing to learn that Bell's mother and his wife were both deaf, and that from an early age he was immersed in research on the nature of sound and oral communication. How important were these personal relationships in shaping his outlook and inventions? One of my greatest surprises when I started research for Reluctant Genius was the discovery that Bell's first ambition was to be a teacher of the deaf, and that he remained committed to the cause of improved education for the hearing impaired throughout his life. I had no idea of this side of him, or of his long relationship with Helen Keller. The fact that the two most important women in his life, his mother and his wife, were deaf was of crucial importance both to his own work, and to his attitude to others. His respect for their intelligences and personalities meant that, unlike many of his contemporaries, he never assumed that deafness was linked to intellectual disability. Moreover, his scientific interest in their condition informed his telephone research. Because he knew why their ears didn't work, he understood how sound should reach the brain in a hearing person's ear, through the ear drum. None of his competitors made that intuitive leap. Their early attempts to build working telephones were foiled because they didn't include the diaphragm that mimicked the action of the ear drum, and which was the key feature of Bell's first phone. Lastly, Bell was also fascinated by the intergenerational transmission of deafness. This led to his research on genetics in general - and the program he initiated at his summer home, in Cape Breton, to breed a flock of "super sheep" that would always have twin births. 5. Bell's wife, Mabel Hubbard Bell, was a remarkable person in her own right. Why was it so important to tell her story? Too often, biographies of "Great Men" suggest they achieved everything by their own efforts. A few did, of course, but most depended on the support and encouragement of others--parents, partners, associates--to provide the right environment in which they could achieve their goals. Behind every great man
.This was the case with Alexander Graham Bell. He would always have had his "Eureka Moment", in the summer of 1874, when he realized how a "talking telegraph" might work. But without Mabel, we probably would never have heard of him. He would not have patented the invention or found the business partners who helped him moved his invention from the laboratory to the market place. Mabel's father, Gardiner Hubbard, was his patent lawyer: Mabel herself ensured that he went to the Philadelphia Exposition, in 1876, to demonstrate his new apparatus. In later years, Mabel provided all kinds of other practical help, in ensuring that her exasperating husband could focus on his inventions. She handled the financial side of their marriage: she found qualified young men who could help him work on his flying machines: she was always cheering him up and stroking his ego when he got depressed. And she created, along with their two daughters, a warm family environment which gave balance to Bell's life - and which so many of his contemporaries, including Thomas Edison, never enjoyed. I was determined to give Mabel her due in the story of Bell. I found her such an attractive and intriguing figure. She was stone deaf, ten years younger than her husband, and their relationship began as a teacher-student one. It would be easy to assume that this brilliant, world famous man would be the dominant figure in the relationship. In fact, the reverse is true. 6. What do you think Bell would think of cell phones, the internet and other wireless means of communication? Bell himself anticipated "electric communication": he was very frustrated by how long it took for a letter from Nova Scotia to reach Europe. I'm sure he would be delighted by the internet. However, he would be appalled by the constant buzz of other technological advances, and the way we've allowed them to trump all other forms of human intercourse. This is a man who wouldn't have a telephone in his own study, because its ring would disturb his train of thought. He was a gracious, well-mannered man who would have been horrified by the way many of us let our cell phones to interrupt our face-to-face conversations. And if somebody pulled out a Blackberry and started punching into it while Bell was speaking of him--well, Alec would have muttered, "Shee-e-esh" (the nearest he ever got to swearing) and stomped out of the room. 7. What was the most exciting research discovery that you made? As a biographer, I have to say that my most exciting discovery was the wealth of material I had to work with. Because Alexander Graham Bell could never speak to his wife on the telephone, he and Mabel exchanged long, intimate, colourful letters whenever they were apart--and that was often. I was thrilled to discover, at the Alexander Graham Bell Historic Site in Baddeck, Nova Scotia, 180 three-ring binders of family correspondence (another set is housed at the Library of Congress, Washington.) These letters let me explore the inner-workings of the mind of a genius, and of a remarkable marriage, in a way that I had hardly dared hope for. I was also amazed at the range of Bell's activities. The telephone, the photophone (which sent sounds down beams of light), an early iron lung, a desalination process for salt water, flying machines, hydrofoils, genetic experiments
his scientific interests were enormously varied. And at the same time, he was doing so much else, for example with the Smithsonian Institute, and the National Geographic Society. And throughout his career, there was his long-running commitment to deaf education. It was hard not to be overwhelmed! 8. What are you working on right now? Yes, I'm already launched on my next biography. (In fact, I find it very hard not to start my next book before the previous one is even in the stores--I have a psychological need to live both my own life and someone else's!) My next project is a short biography of Nellie McClung, the Canadian author and political activist.
My Brief History
Stephen Hawking - 2013
Now, for the first time, perhaps the most brilliant cosmologist of our age turns his gaze inward for a revealing look at his own life and intellectual evolution. My Brief History recounts Stephen Hawking’s improbable journey, from his postwar London boyhood to his years of international acclaim and celebrity. Lavishly illustrated with rarely seen photographs, this concise, witty, and candid account introduces readers to a Hawking rarely glimpsed in previous books: the inquisitive schoolboy whose classmates nicknamed him Einstein; the jokester who once placed a bet with a colleague over the existence of a particular black hole; and the young husband and father struggling to gain a foothold in the world of physics and cosmology. Writing with characteristic humility and humor, Hawking opens up about the challenges that confronted him following his diagnosis of ALS at age twenty-one. Tracing his development as a thinker, he explains how the prospect of an early death urged him onward through numerous intellectual breakthroughs, and talks about the genesis of his masterpiece A Brief History of Time—one of the iconic books of the twentieth century. Clear-eyed, intimate, and wise, My Brief History opens a window for the rest of us into Hawking’s personal cosmos.
Rosalind Franklin: The Dark Lady of DNA
Brenda Maddox - 2002
Brenda Maddox tells a powerful story of a remarkably single-minded, forthright, and tempestuous young woman who, at the age of fifteen, decided she was going to be a scientist, but who was airbrushed out of the greatest scientific discovery of the twentieth century.
Between Man and Beast: An Unlikely Explorer, the Evolution Debates, and the African Adventure That Took the Victorian World by Storm
Monte Reel - 2013
When he emerged three years later, the summation of his efforts only hinted at what he'd experienced in one of the most dangerous regions on earth. Armed with an astonishing collection of zoological specimens, Du Chaillu leapt from the physical challenges of the jungle straight into the center of the biggest issues of the time--the evolution debate, racial discourse, the growth of Christian fundamentalism--and helped push each to unprecedented intensities. He experienced instant celebrity, but with that fame came whispers--about his past, his credibility, and his very identity--which would haunt the young man. Grand in scope, immediate in detail, and propulsively readable, Between Man and Beast brilliantly combines Du Chaillu's personal journey with the epic tale of a world hovering on the sharp edge of transformation.
E=mc²: A Biography of the World's Most Famous Equation
David Bodanis - 2000
Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee
Archimedes to Hawking: Laws of Science and the Great Minds Behind Them
Clifford A. Pickover - 2008
Throughout this fascinating book, Clifford Pickover invites us to share in the amazing adventures of brilliant, quirky, and passionate people after whom these laws are named. These lawgivers turn out to be a fascinating, diverse, and sometimes eccentric group of people. Many were extremely versatile polymaths--human dynamos with a seemingly infinite supply of curiosity and energy and who worked in many different areas in science. Others had non-conventional educations and displayed their unusual talents from an early age. Some experienced resistance to their ideas, causing significant personal anguish. Pickover examines more than 40 great laws, providing brief and cogent introductions to the science behind the laws as well as engaging biographies of such scientists as Newton, Faraday, Ohm, Curie, and Planck. Throughout, he includes fascinating, little-known tidbits relating to the law or lawgiver, and he provides cross-references to other laws or equations mentioned in the book. For several entries, he includes simple numerical examples and solved problems so that readers can have a hands-on understanding of the application of the law. A sweeping survey of scientific discovery as well as an intriguing portrait gallery of some of the greatest minds in history, this superb volume will engage everyone interested in science and the physical world or in the dazzling creativity of these brilliant thinkers.
Zero: The Biography of a Dangerous Idea
Charles Seife - 2000
For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.