Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Unit Testing: Principles, Practices, and Patterns


Vladimir Khorikov - 2019
    You’ll learn to spot which tests are performing, which need refactoring, and which need to be deleted entirely! Upgrade your testing suite with new testing styles, good patterns, and reliable automated testing.

Professor Frisby's Mostly Adequate Guide to Functional Programming


Brian Lonsdorf
    We'll use the world's most popular functional programming language: JavaScript. Some may feel this is a poor choice as it's against the grain of the current culture which, at the moment, feels predominately imperative. However, I believe it is the best way to learn FP for several reasons:You likely use it every day at work.This makes it possible to practice and apply your acquired knowledge each day on real world programs rather than pet projects on nights and weekends in an esoteric FP language.We don't have to learn everything up front to start writing programs.In a pure functional language, you cannot log a variable or read a DOM node without using monads. Here we can cheat a little as we learn to purify our codebase. It's also easier to get started in this language since it's mixed paradigm and you can fall back on your current practices while there are gaps in your knowledge.The language is fully capable of writing top notch functional code.We have all the features we need to mimic a language like Scala or Haskell with the help of a tiny library or two. Object-oriented programming currently dominates the industry, but it's clearly awkward in JavaScript. It's akin to camping off of a highway or tap dancing in galoshes. We have to bind all over the place lest this change out from under us, we don't have classes[^Yet], we have various work arounds for the quirky behavior when the new keyword is forgotten, private members are only available via closures. To a lot of us, FP feels more natural anyways.That said, typed functional languages will, without a doubt, be the best place to code in the style presented by this book. JavaScript will be our means of learning a paradigm, where you apply it is up to you. Luckily, the interfaces are mathematical and, as such, ubiquitous. You'll find yourself at home with swiftz, scalaz, haskell, purescript, and other mathematically inclined environments.

Software Design X-Rays: Fix Technical Debt with Behavioral Code Analysis


Adam Tornhill - 2018
    And that’s just for starters. Because good code involves social design, as well as technical design, you can find surprising dependencies between people and code to resolve coordination bottlenecks among teams. Best of all, the techniques build on behavioral data that you already have: your version-control system. Join the fight for better code!

The Go Programming Language


Alan A.A. Donovan - 2015
    It has been winning converts from dynamic language enthusiasts as well as users of traditional compiled languages. The former appreciate the robustness and efficiency that Go's lightweight type system brings to their code; the latter find Go's simplicity and fast tools a refreshing change. Thanks to its well-designed standard libraries and its excellent support for concurrent programming, Go is fast becoming the language of choice for distributed systems. The Go Programming Language is the definitive book on Go for the working programmer. It assumes no prior knowledge of Go, nor any other specific programming language, so you'll find it an accessible guide whether you come from JavaScript, Ruby, Python, Java, or C++. The book will quickly get you started using Go effectively from the beginning, and by the end, you will know how to use it well to write clear, idiomatic and efficient programs to solve real-world problems. You'll understand not just how to use its standard libraries, but how they work, and how to apply the same design techniques to your own projects. The earlier chapters will introduce you to the basic concepts of Go programming---numbers, strings, functions---while at the same time presenting important computer science concepts like recursion, and useful examples of graphics, UTF-8, and error handling. The chapters on methods and interfaces will show you a new way to think about object-oriented programming; the chapter on concurrency explains why concurrency is so important in modern programming, and how Go helps you handle it well. You'll also learn about Go's pragmatic but effective approach to testing; how to build, test, and manage projects using the go tool, and the art of metaprogramming using reflection. The book contains hundreds of interesting and practical examples that cover the whole language and a wide range of applications. The code samples from the book are available for download from gopl.io.

Team Topologies: Organizing Business and Technology Teams for Fast Flow


Matthew Skelton - 2019
    But how do you build the best team organization for your specific goals, culture, and needs? Team Topologies is a practical, step-by-step, adaptive model for organizational design and team interaction based on four fundamental team types and three team interaction patterns. It is a model that treats teams as the fundamental means of delivery, where team structures and communication pathways are able to evolve with technological and organizational maturity.In Team Topologies, IT consultants Matthew Skelton and Manuel Pais share secrets of successful team patterns and interactions to help readers choose and evolve the right team patterns for their organization, making sure to keep the software healthy and optimize value streams.Team Topologies is a major step forward in organizational design for software, presenting a well-defined way for teams to interact and interrelate that helps make the resulting software architecture clearer and more sustainable, turning inter-team problems into valuable signals for the self-steering organization.

Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale


Neha Narkhede - 2017
    And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems

You Don't Know JS: Up & Going


Kyle Simpson - 2015
    With the "You Don’t Know JS" book series, you’ll get a more complete understanding of JavaScript, including trickier parts of the language that many experienced JavaScript programmers simply avoid.The series’ first book, Up & Going, provides the necessary background for those of you with limited programming experience. By learning the basic building blocks of programming, as well as JavaScript’s core mechanisms, you’ll be prepared to dive into the other, more in-depth books in the series—and be well on your way toward true JavaScript.With this book you will: Learn the essential programming building blocks, including operators, types, variables, conditionals, loops, and functions Become familiar with JavaScript's core mechanisms such as values, function closures, this, and prototypes Get an overview of other books in the series—and learn why it’s important to understand all parts of JavaScript

Haskell Programming From First Principles


Christopher Allen - 2015
    I've spent the last couple years actively teaching Haskell online and in person. Along the way, I started keeping notes on exercises and methods of teaching specific concepts and techniques in Haskell that eventually turned into my guide for learning haskell. That experience led me to work on this book.If you are new to programming entirely, Haskell is a great first language. You may have noticed the trend of "Functional Programming in [Imperative Language]" books and tutorials and learning Haskell gets right to the heart of what functional programming is. Languages such as Java are gradually adopting functional concepts, but most such languages were not designed to be functional languages, after all. We would not encourage you to learn Haskell as an only language, but because Haskell is a pure functional language, it is a fertile environment for mastering functional programming techniques. That way of thinking and problem solving is useful, no matter what other languages you might know or learn.Haskell is not a difficult language to use. Quite the opposite. I'm now able to tackle problems that I couldn't have tackled when I was primarily a Clojure, Common Lisp, or Python user. Haskell is difficult to teach effectively.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Two Scoops of Django: Best Practices for Django 1.8


Daniel Roy Greenfeld - 2015
    This book is chock-full of material that will help you with your Django projects.We’ll introduce you to various tips, tricks, patterns, code snippets, and techniques that we’ve picked up over the years.

Software Architecture for Developers: Volume 1 - Technical leadership and the balance with agility


Simon Brown - 2012
    A developer-friendly, practical and pragmatic guide to lightweight software architecture, technical leadership and the balance with agility.This book is a practical, pragmatic and lightweight guide to software architecture, specifically aimed at developers, and focused around the software architecture role and process.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

Infrastructure as Code: Managing Servers in the Cloud


Kief Morris - 2015
    But many organizations adopting these technologies have found that it only leads to a faster-growing sprawl of unmanageable systems. This is where infrastructure as code can help. With this practical guide, author Kief Morris of ThoughtWorks shows you how to effectively use principles, practices, and patterns pioneered through the DevOps movement to manage cloud age infrastructure.Ideal for system administrators, infrastructure engineers, team leads, and architects, this book demonstrates various tools, techniques, and patterns you can use to implement infrastructure as code. In three parts, you'll learn about the platforms and tooling involved in creating and configuring infrastructure elements, patterns for using these tools, and practices for making infrastructure as code work in your environment.Examine the pitfalls that organizations fall into when adopting the new generation of infrastructure technologiesUnderstand the capabilities and service models of dynamic infrastructure platformsLearn about tools that provide, provision, and configure core infrastructure resourcesExplore services and tools for managing a dynamic infrastructureLearn specific patterns and practices for provisioning servers, building server templates, and updating running servers

Fluent Python: Clear, Concise, and Effective Programming


Luciano Ramalho - 2015
    With this hands-on guide, you'll learn how to write effective, idiomatic Python code by leveraging its best and possibly most neglected features. Author Luciano Ramalho takes you through Python's core language features and libraries, and shows you how to make your code shorter, faster, and more readable at the same time.Many experienced programmers try to bend Python to fit patterns they learned from other languages, and never discover Python features outside of their experience. With this book, those Python programmers will thoroughly learn how to become proficient in Python 3.This book covers:Python data model: understand how special methods are the key to the consistent behavior of objectsData structures: take full advantage of built-in types, and understand the text vs bytes duality in the Unicode ageFunctions as objects: view Python functions as first-class objects, and understand how this affects popular design patternsObject-oriented idioms: build classes by learning about references, mutability, interfaces, operator overloading, and multiple inheritanceControl flow: leverage context managers, generators, coroutines, and concurrency with the concurrent.futures and asyncio packagesMetaprogramming: understand how properties, attribute descriptors, class decorators, and metaclasses work"