Spark: The Definitive Guide: Big Data Processing Made Simple


Bill Chambers - 2018
    With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark’s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Neuralink and the Brain’s Magical Future


Tim Urban - 2017
    

Advances in Financial Machine Learning


Marcos López de Prado - 2018
    Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Hello World: Being Human in the Age of Algorithms


Hannah Fry - 2018
    It’s time we stand face-to-digital-face with the true powers and limitations of the algorithms that already automate important decisions in healthcare, transportation, crime, and commerce. Hello World is indispensable preparation for the moral quandaries of a world run by code, and with the unfailingly entertaining Hannah Fry as our guide, we’ll be discussing these issues long after the last page is turned.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Getting Started with SQL: A Hands-On Approach for Beginners


Thomas Nield - 2016
    If you're a business or IT professional, this short hands-on guide teaches you how to pull and transform data with SQL in significant ways. You will quickly master the fundamentals of SQL and learn how to create your own databases.Author Thomas Nield provides exercises throughout the book to help you practice your newfound SQL skills at home, without having to use a database server environment. Not only will you learn how to use key SQL statements to find and manipulate your data, but you'll also discover how to efficiently design and manage databases to meet your needs.You'll also learn how to:Explore relational databases, including lightweight and centralized modelsUse SQLite and SQLiteStudio to create lightweight databases in minutesQuery and transform data in meaningful ways by using SELECT, WHERE, GROUP BY, and ORDER BYJoin tables to get a more complete view of your business dataBuild your own tables and centralized databases by using normalized design principlesManage data by learning how to INSERT, DELETE, and UPDATE records

The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics


John Sammons - 2011
    This book teaches you how to conduct examinations by explaining what digital forensics is, the methodologies used, key technical concepts and the tools needed to perform examinations. Details on digital forensics for computers, networks, cell phones, GPS, the cloud, and Internet are discussed. Readers will also learn how to collect evidence, document the scene, and recover deleted data. This is the only resource your students need to get a jump-start into digital forensics investigations.This book is organized into 11 chapters. After an introduction to the basics of digital forensics, the book proceeds with a discussion of key technical concepts. Succeeding chapters cover labs and tools; collecting evidence; Windows system artifacts; anti-forensics; Internet and email; network forensics; and mobile device forensics. The book concludes by outlining challenges and concerns associated with digital forensics. PowerPoint lecture slides are also available.This book will be a valuable resource for entry-level digital forensics professionals as well as those in complimentary fields including law enforcement, legal, and general information security.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Sorting Things Out: Classification and Its Consequences


Geoffrey C. Bowker - 1999
    Bowker and Susan Leigh Star explore the role of categories and standards in shaping the modern world. In a clear and lively style, they investigate a variety of classification systems, including the International Classification of Diseases, the Nursing Interventions Classification, race classification under apartheid in South Africa, and the classification of viruses and of tuberculosis.The authors emphasize the role of invisibility in the process by which classification orders human interaction. They examine how categories are made and kept invisible, and how people can change this invisibility when necessary. They also explore systems of classification as part of the built information environment. Much as an urban historian would review highway permits and zoning decisions to tell a city's story, the authors review archives of classification design to understand how decisions have been made. Sorting Things Out has a moral agenda, for each standard and category valorizes some point of view and silences another. Standards and classifications produce advantage or suffering. Jobs are made and lost; some regions benefit at the expense of others. How these choices are made and how we think about that process are at the moral and political core of this work. The book is an important empirical source for understanding the building of information infrastructures.

The Quick Python Book


Naomi R. Ceder - 2000
    This updated edition includes all the changes in Python 3, itself a significant shift from earlier versions of Python.The book begins with basic but useful programs that teach the core features of syntax, control flow, and data structures. It then moves to larger applications involving code management, object-oriented programming, web development, and converting code from earlier versions of Python.True to his audience of experienced developers, the author covers common programming language features concisely, while giving more detail to those features unique to Python.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Pills, Thrills and Methadone Spills: The Adventures of a Community Pharmacist


Mr. Dispenser - 2013
    People need cheering up. I have the answer. ‘Pills, Thrills and Methadone Spills: Adventures of a Community Pharmacist’ is a collection of the best blogs, tweets and anecdotes about the wonderful world of pharmacy.“If the shutter is three quarters down, then we are shut and not just vertically challenged”...“Gave me huge insight into the ‘real’ world of community pharmacy – I didn’t realise just how much pharmacists deal with on a day to day basis, so for me this was very informative, but in a reallyclever, and massively funny way!” Lucy Pitt, Marketing Manager, The Pharmacy Show“As well as being brilliantly funny, this book is a refreshingly honest view of the world of pharmacy. From student pharmacists to the fully-qualified, every chapter provides a story that the reader can relate to and enjoy.” Georgia Salter, Pharmacy Student“A well observed reflection of life in pharmacy with very funny reflections” Catherine Duggan, Royal Pharmaceutical Society"It is always fun to be reminded that pharmacists' perils and fun at the workplace are similar irrespective of which country we practise in!" Selina Hui-Hoong Wee , Pharmacist, Malaysia“A great entertaining and amusing read" Mike Holden, Chief Executive, National Pharmacy AsociationThanks to Laura Martins for her initial book cover design!

Data Mining: Practical Machine Learning Tools and Techniques


Ian H. Witten - 1999
    This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915            0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)

Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing


Ron Kohavi - 2020
    This practical guide by experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to accelerate innovation using trustworthy online controlled experiments, or A/B tests. Based on practical experiences at companies that each run more than 20,000 controlled experiments a year, the authors share examples, pitfalls, and advice for students and industry professionals getting started with experiments, plus deeper dives into advanced topics for practitioners who want to improve the way they make data-driven decisions. Learn how to - Use the scientific method to evaluate hypotheses using controlled experiments - Define key metrics and ideally an Overall Evaluation Criterion - Test for trustworthiness of the results and alert experimenters to violated assumptions - Build a scalable platform that lowers the marginal cost of experiments close to zero - Avoid pitfalls like carryover effects and Twyman's law - Understand how statistical issues play out in practice.

Robot Building for Beginners


David Cook - 2002
    Not only does author David Cook assist you in understanding the component parts of robot development, but he also presents valuable techniques that prepare you to make new discoveries on your own.Cook begins with the anatomy of a homemade robot and gives you the best advice on how to proceed successfully. General sources for tools and parts are provided in a consolidated list, and specific parts are recommended throughout the book. Also, basic safety precautions and essential measuring and numbering systems are promoted throughout.Specific tools and parts covered include digital multimeters, motors, wheels, resistors, LEDs, photoresistors, transistors, chips, gears, nut drivers, batteries, and more. "Robot Building for Beginners" is an inspiring book that provides an essential base of practical knowledge for anyone getting started in amateur robotics.

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills