The Trouble with Gravity: Solving the Mystery Beneath Our Feet


Richard Panek - 2019
    What is gravity? Nobody knows—and just about nobody knows that nobody knows. How something so pervasive can also be so mysterious, and how that mystery can be so wholly unrecognized outside the field of physics, is one of the greatest conundrums in modern science. But as award-winning author Richard Panek shows in this groundbreaking book, gravity is a cold case that we are closer to cracking than ever—and whose very investigation has yielded untold truths about the cosmos and humanity itself. Part scientific detective story, part meta­physical romp, The Trouble with Gravity is a revelation: the first in-depth, accessible study of this ubiquitous, elusive force. Gravity and our efforts to understand it, Panek reveals, have shaped not only the world we inhabit, but also our bodies, minds, and culture. Its influence can be seen in everything from ancient fables to modern furniture, Dante’s Inferno to the pratfalls of Laurel and Hardy, bipedalism to black holes. As we approach the truth about gravity, we should also be prepared to know both our universe and our­selves as never before.

The Theoretical Minimum: What You Need to Know to Start Doing Physics


Leonard Susskind - 2013
    In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Space at the Speed of Light: The History of 14 Billion Years for People Short on Time


Becky Smethurst - 2020
    In the 14 billion years since, scientists have pointed their telescopes upward, peering outward in space and backward in time, developing and refining theories to explain the weird and wonderful phenomena they observed.Through these observations, we now understand concepts like the size of the universe (still expanding), the distance to the next-nearest star from earth (Alpha Centauri, 26 trillion miles) and what drives the formation of elements (nuclear fusion), planets and galaxies (gravity), and black holes (gravitational collapse). But are these cosmological questions definitively answered or is there more to discover?Oxford University astrophysicist and popular YouTube personality Dr. Becky Smethurst presents everything you need to know about the universe in 10 accessible and engaging lessons.In Space at the Speed of Light: The History of 14 Billion Years for People Short on Time, she guides you through fundamental questions, both answered and unanswered, posed by space scientists. Why does gravity matter? How do we know the big bang happened? What is dark matter? Do aliens exist? Why is the sky dark at night? If you have ever looked up at night and wondered how it all works, you will find answers - and many more questions - in this pocket-sized tour of the universe!

Fundamental: How quantum and particle physics explain absolutely everything (except gravity)


Tim James - 2019
    In the quantum realm, objects can be in two places at once. It's a place where time travel is not only possible, but necessary. It's a place where cause and effect can happen in reverse and observing something changes its state. From parallel universes to antimatter, quantum mechanics has revealed that when you get right down to it, the laws of nature are insane. The scientist J. B. S. Haldane once said, 'Reality is not only stranger than we imagine . . . it's stranger than we can imagine.' Never is this more true than with quantum mechanics; our best, most recent attempt to make sense of the fundamental laws of nature.Fundamental is a comprehensive beginner's guide to quantum mechanics, explaining not only the weirdness of the subject but the experiments that proved it to be true. Using a humorous and light-hearted approach, Fundamental tells the story of how the most brilliant minds in science grappled with seemingly impossible ideas and gave us everything from microchips to particle accelerators. Fundamental gives clear explanations of all the quantum phenomena known to modern science, without requiring an understanding of complex mathematics; tells the eccentric stories of the scientists who made these shattering discoveries and what they used them for; explains how quantum field theory (a topic not covered in detail by any other popular-science book) gave rise to particle physics and why the Higgs boson isn't the end of the story.

The Ascent of Information: Books, Bits, Genes, Machines, and Life's Unending Algorithm


Caleb Scharf - 2021
    But in our rush to build the infrastructure for the 20 quintillion bits we create every day, we've failed to ask exactly why we're expending ever-increasing amounts of energy, resources, and human effort to maintain all this data.Drawing on deep ideas and frontier thinking in evolutionary biology, computer science, information theory, and astrobiology, Caleb Scharf argues that information is, in a very real sense, alive. All the data we create--all of our emails, tweets, selfies, A.I.-generated text and funny cat videos--amounts to an aggregate lifeform. It has goals and needs. It can control our behavior and influence our well-being. And it's an organism that has evolved right alongside us.This symbiotic relationship with information offers a startling new lens for looking at the world. Data isn't just something we produce; it's the reason we exist. This powerful idea has the potential to upend the way we think about our technology, our role as humans, and the fundamental nature of life. The Ascent of Information offers a humbling vision of a universe built of and for information. Scharf explores how our relationship with data will affect our ongoing evolution as a species. Understanding this relationship will be crucial to preventing our data from becoming more of a burden than an asset, and to preserving the possibility of a human future.

Infinity in the Palm of Your Hand: Fifty Wonders That Reveal an Extraordinary Universe


Marcus Chown - 2018
    But our adventures in space, our deepening understanding of the quantum world and huge leaps in technology over the last century have also revealed a universe far stranger than we could ever have imagined.With brilliant clarity and wit, bestselling author Marcus Chown examines the profound science behind fifty remarkable scientific facts that help explain the vast complexities of our existence. Did you know that you could fit the whole human race in the volume of a sugar cube? Or that the electrical energy in a single mosquito is enough to cause a global mass extinction? Or that, out there in the cosmos, there are an infinite number of copies of you reading an infinite number of copies of this?Infinity in the Palm of Your Hand is a mind-bending journey through some of the most weird and wonderful facts about our universe, vividly illuminating the hidden truths that govern our everyday lives.

The Little Book of Cosmology


Lyman Page - 2020
    Written by one of the world's leading experimental cosmologists, this short but deeply insightful book describes what scientists are revealing through precise measurements of the faint thermal afterglow of the Big Bang--known as the cosmic microwave background, or CMB--and how their findings are transforming our view of the cosmos.Blending the latest findings in cosmology with essential concepts from physics, Lyman Page first helps readers to grasp the sheer enormity of the universe, explaining how to understand the history of its formation and evolution in space and time. Then he sheds light on how spatial variations in the CMB formed, how they reveal the age, size, and geometry of the universe, and how they offer a blueprint for the formation of cosmic structure.Not only does Page explain current observations and measurements, he describes how they can be woven together into a unified picture to form the Standard Model of Cosmology. Yet much remains unknown, and this incisive book also describes the search for ever deeper knowledge at the field's frontiers--from quests to understand the nature of neutrinos and dark energy to investigations into the physics of the very early universe.

The Constants of Nature: The Numbers That Encode the Deepest Secrets of the Universe


John D. Barrow - 2002
    In The Constants of Nature, Cambridge Professor and bestselling author John D.Barrow takes us on an exploration of these governing principles. Drawing on physicists such as Einstein and Planck, Barrow illustrates with stunning clarity our dependence on the steadfastness of these principles. But he also suggests that the basic forces may have been radically different during the universe’s infancy, and suggests that they may continue a deeply hidden evolution. Perhaps most tantalizingly, Barrow theorizes about the realities that might one day be found in a universe with different parameters than our own.

Superheavy: Making and Breaking the Periodic Table


Kit Chapman - 2019
    The science of element discovery is a truly fascinating field, and is constantly rewriting the laws of chemistry and physics as we know them. Superheavy is the first book to take an in-depth look at how synthetic elements are discovered, why they matter and where they will take us. From the Cold War nuclear race to the present day, scientists have stretched the periodic table to 118 elements. They have broken the rules of the periodic table, rewriting the science we're taught in school, and have the potential to revolutionize our lives.Kit Chapman takes us back to the very beginning, with the creation of the atomic bomb. He tells the story of the major players, such as Ernest Lawrence who revolutionized the field of particle physics with the creation of the cyclotron; Yuri Oganessian, the guerilla scientist who opened up a new era of discovery in the field and is the only living scientists to have an element named after him; and Victor Ninov, the disgraced physicist who almost pulled off the greatest fraud in nuclear science. This book will bring us in a full circle back to Oak Ridge National Laboratory, where the first atomic bomb was developed, and that has more recently been an essential player in creating the new superheavy element 117.Throughout, Superheavy explains the complex science of element discovery in clear and easy-to-follow terms. It walks through the theories of atomic structure, discusses the equipment used and explains the purpose of the research. By the end of the book readers will not only marvel at how far we've come, they will be in awe of where we are going and what this could mean for the worlds of physics and chemistry as we know them today.

Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics


Paul Halpern - 2015
    Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.

Absolute Zero and the Conquest of Cold


Tom Shachtman - 1999
    Readers take an extraordinary trip, starting in the 1600s with an alchemist's air conditioning of Westminster Abbey and scientists' creation of thermometers. Later, while entrepreneurs sold Walden Pond ice to tropical countries -- packed in "high-tech" sawdust -- researchers pursued absolute zero and interpreted their work as romantically as did adventurers to remote regions. Today, playing with ultracold temperatures is one of the hottest frontiers in physics, with scientists creating useful particles Einstein only dreamed of. Tom Shachtman shares a great scientific adventure story and its characters' rich lives in a book that has won a grant from the prestigious Alfred P. Sloan Foundation. Absolute Zero is for everyone who loves history and science history stories, who's eager to explore Nobel Prize-winning physics today, or who has ever sighed with pleasure on encountering air conditioning.

Catching Stardust: Comets, Asteroids and the Birth of the Solar System


Natalie Starkey - 2018
    Locked within each of these extra-terrestrial objects is the 4.6-billion-year wisdom of Solar System events, and by studying them at close quarters using spacecraft we can coerce them into revealing their closely-guarded secrets. This offers us the chance to answer some fundamental questions about our planet and its inhabitants. Exploring comets and asteroids also allows us to shape the story of Earth's future, enabling us to protect our precious planet from the threat of a catastrophic impact from space, and maybe to even recover valuable raw materials from them. This cosmic bounty could be as useful in space as it is on Earth, providing the necessary fuel and supplies for humans as they voyage into deep space to explore more distant locations within the Solar System. Catching Stardust tells the story of these enigmatic celestial objects, revealing how scientists are using them to help understand a crucial time in our history – the birth of the Solar System, and everything contained within it.

The Physics of Star Wars: The Science Behind a Galaxy Far, Far Away


Patrick Johnson - 2017
    In The Physics of Star Wars, you’ll explore the mystical power of the Force using quantum mechanics, find out how much energy it would take for the Death Star or Starkiller Base to destroy a planet, and discover how we can potentially create our very own lightsabers. The fantastical world of Star Wars may become a reality!

The Faceless Villain: A Collection of the Eeriest Unsolved Murders of the 20th Century: Volume One


Jenny Ashford - 2017
    This volume is comprised of the years 1900 through 1959, and includes all of the best known cases of the period, as well as many more lesser-known murders, all presented in a compelling chronological narrative that takes the reader on a grisly journey through the blood-soaked avenues of early twentieth century crime. Featuring: The Peasenhall Murder. The Seal Chart Murder. The Atlanta Ripper. The Villisca Axe Murders. The Axeman of New Orleans. The Green Bicycle Case. Little Lord Fauntleroy. Hinterkaifeck Farm. The St. Aubin Street Massacre. The Wallace Case. The Atlas Vampire. The Brighton Trunk Crime. The Cleveland Torso Murderer. The Horror in Room 1046. Who Put Bella in the Wych Elm? The Pitchfork Murder. The Sodder Children. The Phantom Killer. The Black Dahlia. Somerton Man. The Grimes Sisters. The Boy in the Box. And Much More!

Black Hole Blues and Other Songs from Outer Space


Janna Levin - 2016
    A strong gravitational wave will briefly change that distance by less than the thickness of a human hair. We have perhaps less than a few tenths of a second to perform this measurement. And we don’t know if this infinitesimal event will come next month, next year or perhaps in thirty years.In 1916 Einstein predicted the existence of gravitational waves: miniscule ripples in the very fabric of spacetime generated by unfathomably powerful events. If such vibrations could somehow be recorded, we could observe our universe for the first time through sound: the hissing of the Big Bang, the whale-like tunes of collapsing stars, the low tones of merging galaxies, the drumbeat of two black holes collapsing into one. For decades, astrophysicists have searched for a way of doing so…In 2016 a team of hundreds of scientists at work on a billion-dollar experiment made history when they announced the first ever detection of a gravitational wave, confirming Einstein’s prediction. This is their story, and the story of the most sensitive scientific instrument ever made: LIGO.Based on complete access to LIGO and the scientists who created it, Black Hole Blues provides a firsthand account of this astonishing achievement: a compelling, intimate portrait of cutting-edge science at its most awe-inspiring and ambitious.