Systems Performance: Enterprise and the Cloud


Brendan Gregg - 2013
    Now, internationally renowned performance expert Brendan Gregg has brought together proven methodologies, tools, and metrics for analyzing and tuning even the most complex environments. Systems Performance: Enterprise and the Cloud focuses on Linux(R) and Unix(R) performance, while illuminating performance issues that are relevant to all operating systems. You'll gain deep insight into how systems work and perform, and learn methodologies for analyzing and improving system and application performance. Gregg presents examples from bare-metal systems and virtualized cloud tenants running Linux-based Ubuntu(R), Fedora(R), CentOS, and the illumos-based Joyent(R) SmartOS(TM) and OmniTI OmniOS(R). He systematically covers modern systems performance, including the "traditional" analysis of CPUs, memory, disks, and networks, and new areas including cloud computing and dynamic tracing. This book also helps you identify and fix the "unknown unknowns" of complex performance: bottlenecks that emerge from elements and interactions you were not aware of. The text concludes with a detailed case study, showing how a real cloud customer issue was analyzed from start to finish. Coverage includes - Modern performance analysis and tuning: terminology, concepts, models, methods, and techniques - Dynamic tracing techniques and tools, including examples of DTrace, SystemTap, and perf - Kernel internals: uncovering what the OS is doing - Using system observability tools, interfaces, and frameworks - Understanding and monitoring application performance - Optimizing CPUs: processors, cores, hardware threads, caches, interconnects, and kernel scheduling - Memory optimization: virtual memory, paging, swapping, memory architectures, busses, address spaces, and allocators - File system I/O, including caching - Storage devices/controllers, disk I/O workloads, RAID, and kernel I/O - Network-related performance issues: protocols, sockets, interfaces, and physical connections - Performance implications of OS and hardware-based virtualization, and new issues encountered with cloud computing - Benchmarking: getting accurate results and avoiding common mistakes This guide is indispensable for anyone who operates enterprise or cloud environments: system, network, database, and web admins; developers; and other professionals. For students and others new to optimization, it also provides exercises reflecting Gregg's extensive instructional experience.

Design Patterns: Elements of Reusable Object-Oriented Software


Erich Gamma - 1994
    Previously undocumented, these 23 patterns allow designers to create more flexible, elegant, and ultimately reusable designs without having to rediscover the design solutions themselves.The authors begin by describing what patterns are and how they can help you design object-oriented software. They then go on to systematically name, explain, evaluate, and catalog recurring designs in object-oriented systems. With Design Patterns as your guide, you will learn how these important patterns fit into the software development process, and how you can leverage them to solve your own design problems most efficiently. Each pattern describes the circumstances in which it is applicable, when it can be applied in view of other design constraints, and the consequences and trade-offs of using the pattern within a larger design. All patterns are compiled from real systems and are based on real-world examples. Each pattern also includes code that demonstrates how it may be implemented in object-oriented programming languages like C++ or Smalltalk.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Language Implementation Patterns: Techniques for Implementing Domain-Specific Languages


Terence Parr - 2009
    Instead of writing code in a general-purpose programming language, you can first build a custom language tailored to make you efficient in a particular domain. The key is understanding the common patterns found across language implementations. Language Design Patterns identifies and condenses the most common design patterns, providing sample implementations of each. The pattern implementations use Java, but the patterns themselves are completely general. Some of the implementations use the well-known ANTLR parser generator, so readers will find this book an excellent source of ANTLR examples as well. But this book will benefit anyone interested in implementing languages, regardless of their tool of choice. Other language implementation books focus on compilers, which you rarely need in your daily life. Instead, Language Design Patterns shows you patterns you can use for all kinds of language applications. You'll learn to create configuration file readers, data readers, model-driven code generators, source-to-source translators, source analyzers, and interpreters. Each chapter groups related design patterns and, in each pattern, you'll get hands-on experience by building a complete sample implementation. By the time you finish the book, you'll know how to solve most common language implementation problems.

Programming Erlang


Joe Armstrong - 2007
    It's used worldwide by companies who need to produce reliable, efficient, and scalable applications. Invest in learning Erlang now.Moore's Law is the observation that the amount you can do on a single chip doubles every two years. But Moore's Law is taking a detour. Rather than producing faster and faster processors, companies such as Intel and AMD are producing multi-core devices: single chips containing two, four, or more processors. If your programs aren't concurrent, they'll only run on a single processor at a time. Your users will think that your code is slow.Erlang is a programming language designed for building highly parallel, distributed, fault-tolerant systems. It has been used commercially for many years to build massive fault-tolerated systems that run for years with minimal failures.Erlang programs run seamlessly on multi-core computers: this means your Erlang program should run a lot faster on a 4 core processor than on a single core processor, all without you having to change a line of code.Erlang combines ideas from the world of functional programming with techniques for building fault-tolerant systems to make a powerful language for building the massively parallel, networked applications of the future.This book presents Erlang and functional programming in the familiar Pragmatic style. And it's written by Joe Armstrong, one of the creators of Erlang.It includes example code you'll be able to build upon. In addition, the book contains the full source code for two interesting applications:A SHOUTcast server which you can use to stream music to every computer in your house, and a full-text indexing and search engine that can index gigabytes of data. Learn how to write programs that run on dozens or even hundreds of local and remote processors. See how to write robust applications that run even in the face of network and hardware failure, using the Erlang programming language.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Are You Smart Enough to Work at Google?


William Poundstone - 2012
    The blades start moving in 60 seconds. What do you do? If you want to work at Google, or any of America's best companies, you need to have an answer to this and other puzzling questions. Are You Smart Enough to Work at Google? guides readers through the surprising solutions to dozens of the most challenging interview questions. The book covers the importance of creative thinking, ways to get a leg up on the competition, what your Facebook page says about you, and much more. Are You Smart Enough to Work at Google? is a must-read for anyone who wants to succeed in today's job market.

The New Turing Omnibus: 66 Excursions In Computer Science


A.K. Dewdney - 1989
    K. Dewdney's The Turing Omnibus.Updated and expanded, The Turing Omnibus offers 66 concise, brilliantly written articles on the major points of interest in computer science theory, technology, and applications. New for this tour: updated information on algorithms, detecting primes, noncomputable functions, and self-replicating computers--plus completely new sections on the Mandelbrot set, genetic algorithms, the Newton-Raphson Method, neural networks that learn, DOS systems for personal computers, and computer viruses.Contents:1 Algorithms 2 Finite Automata 3 Systems of Logic 4 Simulation 5 Godel's Theorem 6 Game Trees 7 The Chomsky Hierarchy 8 Random Numbers 9 Mathematical Research 10 Program Correctness 11 Search Trees 12 Error-Corecting Codes 13 Boolean Logic 14 Regular Languages 15 Time and Space Complexity 16 Genetic Algorithms 17 The Random Access Machine 18 Spline Curves 19 Computer Vision 20 Karnaugh Maps 21 The Newton-Raphson Method 22 Minimum Spanning Trees 23 Generative Grammars 24 Recursion 25 Fast Multiplication 26 Nondeterminism 27 Perceptrons 28 Encoders and Multiplexers 29 CAT Scanning 30 The Partition Problem 31 Turing Machines 32 The Fast Fourier Transform 33 Analog Computing 34 Satisfiability 35 Sequential Sorting 36 Neural Networks That Learn 37 Public Key Cryptography 38 Sequential Cirucits 39 Noncomputerable Functions 40 Heaps and Merges 41 NP-Completeness 42 Number Systems for Computing 43 Storage by Hashing 44 Cellular Automata 45 Cook's Theorem 46 Self-Replicating Computers 47 Storing Images 48 The SCRAM 49 Shannon's Theory 50 Detecting Primes 51 Universal Turing Machines 52 Text Compression 53 Disk Operating Systems 54 NP-Complete Problems 55 Iteration and Recursion 56 VLSI Computers 57 Linear Programming 58 Predicate Calculus 59 The Halting Problem 60 Computer Viruses 61 Searching Strings 62 Parallel Computing 63 The Word Problem 64 Logic Programming 65 Relational Data Bases 66 Church's Thesis

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

The Problem with Software: Why Smart Engineers Write Bad Code


Adam Barr - 2018
    As the size and complexity of commercial software have grown, the gap between academic computer science and industry has widened. It's an open secret that there is little engineering in software engineering, which continues to rely not on codified scientific knowledge but on intuition and experience.Barr, who worked as a programmer for more than twenty years, describes how the industry has evolved, from the era of mainframes and Fortran to today's embrace of the cloud. He explains bugs and why software has so many of them, and why today's interconnected computers offer fertile ground for viruses and worms. The difference between good and bad software can be a single line of code, and Barr includes code to illustrate the consequences of seemingly inconsequential choices by programmers. Looking to the future, Barr writes that the best prospect for improving software engineering is the move to the cloud. When software is a service and not a product, companies will have more incentive to make it good rather than "good enough to ship."

Feynman Lectures On Computation


Richard P. Feynman - 1996
    Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

The Linux Programming Interface: A Linux and Unix System Programming Handbook


Michael Kerrisk - 2010
    You'll learn how to:Read and write files efficiently Use signals, clocks, and timers Create processes and execute programs Write secure programs Write multithreaded programs using POSIX threads Build and use shared libraries Perform interprocess communication using pipes, message queues, shared memory, and semaphores Write network applications with the sockets API While The Linux Programming Interface covers a wealth of Linux-specific features, including epoll, inotify, and the /proc file system, its emphasis on UNIX standards (POSIX.1-2001/SUSv3 and POSIX.1-2008/SUSv4) makes it equally valuable to programmers working on other UNIX platforms.The Linux Programming Interface is the most comprehensive single-volume work on the Linux and UNIX programming interface, and a book that's destined to become a new classic.Praise for The Linux Programming Interface "If I had to choose a single book to sit next to my machine when writing software for Linux, this would be it." —Martin Landers, Software Engineer, Google "This book, with its detailed descriptions and examples, contains everything you need to understand the details and nuances of the low-level programming APIs in Linux . . . no matter what the level of reader, there will be something to be learnt from this book." —Mel Gorman, Author of Understanding the Linux Virtual Memory Manager "Michael Kerrisk has not only written a great book about Linux programming and how it relates to various standards, but has also taken care that bugs he noticed got fixed and the man pages were (greatly) improved. In all three ways, he has made Linux programming easier. The in-depth treatment of topics in The Linux Programming Interface . . . makes it a must-have reference for both new and experienced Linux programmers." —Andreas Jaeger, Program Manager, openSUSE, Novell "Michael's inexhaustible determination to get his information right, and to express it clearly and concisely, has resulted in a strong reference source for programmers. While this work is targeted at Linux programmers, it will be of value to any programmer working in the UNIX/POSIX ecosystem." —David Butenhof, Author of Programming with POSIX Threads and Contributor to the POSIX and UNIX Standards ". . . a very thorough—yet easy to read—explanation of UNIX system and network programming, with an emphasis on Linux systems. It's certainly a book I'd recommend to anybody wanting to get into UNIX programming (in general) or to experienced UNIX programmers wanting to know 'what's new' in the popular GNU/Linux system." —Fernando Gont, Network Security Researcher, IETF Participant, and RFC Author ". . . encyclopedic in the breadth and depth of its coverage, and textbook-like in its wealth of worked examples and exercises. Each topic is clearly and comprehensively covered, from theory to hands-on working code. Professionals, students, educators, this is the Linux/UNIX reference that you have been waiting for." —Anthony Robins, Associate Professor of Computer Science, The University of Otago "I've been very impressed by the precision, the quality and the level of detail Michael Kerrisk put in his book. He is a great expert of Linux system calls and lets us share his knowledge and understanding of the Linux APIs." —Christophe Blaess, Author of Programmation systeme en C sous Linux ". . . an essential resource for the serious or professional Linux and UNIX systems programmer. Michael Kerrisk covers the use of all the key APIs across both the Linux and UNIX system interfaces with clear descriptions and tutorial examples and stresses the importance and benefits of following standards such as the Single UNIX Specification and POSIX 1003.1." —Andrew Josey, Director, Standards, The Open Group, and Chair of the POSIX 1003.1 Working Group "What could be better than an encyclopedic reference to the Linux system, from the standpoint of the system programmer, written by none other than the maintainer of the man pages himself? The Linux Programming Interface is comprehensive and detailed. I firmly expect it to become an indispensable addition to my programming bookshelf." —Bill Gallmeister, Author of POSIX.4 Programmer's Guide: Programming for the Real World ". . . the most complete and up-to-date book about Linux and UNIX system programming. If you're new to Linux system programming, if you're a UNIX veteran focused on portability while interested in learning the Linux way, or if you're simply looking for an excellent reference about the Linux programming interface, then Michael Kerrisk's book is definitely the companion you want on your bookshelf." —Loic Domaigne, Chief Software Architect (Embedded), Corpuls.com

Head First Java


Kathy Sierra - 2005
    You might think the problem is your brain. It seems to have a mind of its own, a mind that doesn't always want to take in the dry, technical stuff you're forced to study. The fact is your brain craves novelty. It's constantly searching, scanning, waiting for something unusual to happen. After all, that's the way it was built to help you stay alive. It takes all the routine, ordinary, dull stuff and filters it to the background so it won't interfere with your brain's real work--recording things that matter. How does your brain know what matters? It's like the creators of the Head First approach say, suppose you're out for a hike and a tiger jumps in front of you, what happens in your brain? Neurons fire. Emotions crank up. Chemicals surge. That's how your brain knows.And that's how your brain will learn Java. Head First Java combines puzzles, strong visuals, mysteries, and soul-searching interviews with famous Java objects to engage you in many different ways. It's fast, it's fun, and it's effective. And, despite its playful appearance, Head First Java is serious stuff: a complete introduction to object-oriented programming and Java. You'll learn everything from the fundamentals to advanced topics, including threads, network sockets, and distributed programming with RMI. And the new. second edition focuses on Java 5.0, the latest version of the Java language and development platform. Because Java 5.0 is a major update to the platform, with deep, code-level changes, even more careful study and implementation is required. So learning the Head First way is more important than ever. If you've read a Head First book, you know what to expect--a visually rich format designed for the way your brain works. If you haven't, you're in for a treat. You'll see why people say it's unlike any other Java book you've ever read.By exploiting how your brain works, Head First Java compresses the time it takes to learn and retain--complex information. Its unique approach not only shows you what you need to know about Java syntax, it teaches you to think like a Java programmer. If you want to be bored, buy some other book. But if you want to understand Java, this book's for you.

The Art of Doing Science and Engineering: Learning to Learn


Richard Hamming - 1996
    By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned. Along with spectacular successes, the author also conveys how failures contributed to shaping the thought processes. Provides the reader with a style of thinking that will enhance a person's ability to function as a problem-solver of complex technical issues. Consists of a collection of stories about the author's participation in significant discoveries, relating how those discoveries came about and, most importantly, provides analysis about the thought processes and reasoning that took place as the author and his associates progressed through engineering problems.