Philosophy of Science: The Central Issues


Martin Curd - 1998
    Combine this with thoughtful and thorough apparatus, and Philosophy of Science: The Central Issues is the most flexible and comprehensive collection ever created for undergraduate courses.

Consilience: The Unity of Knowledge


Edward O. Wilson - 1998
    In Consilience  (a word that originally meant "jumping together"), Edward O. Wilson renews the Enlightenment's search for a unified theory of knowledge in disciplines that range from physics to biology, the social sciences and the humanities.Using the natural sciences as his model, Wilson forges dramatic links between fields. He explores the chemistry of the mind and the genetic bases of culture. He postulates the biological principles underlying works of art from cave-drawings to Lolita. Presenting the latest findings in prose of wonderful clarity and oratorical eloquence, and synthesizing it into a dazzling whole, Consilience is science in the path-clearing traditions of Newton, Einstein, and Richard Feynman.

Physics and Philosophy: The Revolution in Modern Science


Werner Heisenberg - 1958
    The theme of Heisenberg's exposition is that words and concepts familiar in daily life can lose their meaning in the world of relativity and quantum physics. This in turn has profound philosophical implications for the nature of reality and for our total world view.

The Logic of Scientific Discovery


Karl Popper - 1934
    It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)

Pursuit of Truth


Willard Van Orman Quine - 1990
    V. Quine gives us his latest word on issues to which he has devoted many years. As he says in the preface: "In these pages I have undertaken to update, sum up, and clarify my variously intersecting views on cognitive meaning, objective reference, and the grounds of knowledge?'The pursuit of truth is a quest that links observation, theory, and the world. Various faulty efforts to forge such links have led to much intellectual confusion. Quine's efforts to get beyond the confusion begin by rejecting the very idea of binding together word and thing, rejecting the focus on the isolated word. For him, observation sentences and theoretical sentences are the alpha and omega ofthe scientific enterprise. Notions like "idea" and "meaning" are vague, but a sentence-now there's something you can sink your teeth into.Starting thus with sentences, Quine sketches an epistemological setting for the pursuit of truth. He proceeds to show how reification and reference contribute to the elaborate structure that can indeed relate science to its sensory evidence.In this book Quine both summarizes and moves ahead. Rich, lively chapters dissect his major concerns-evidence, reference, meaning, intension, and truth. "Some points;' he writes, "have become clearer in my mind in the eight years since Theories and Things. Some that were already clear in my mind have become clearer on paper. And there are some that have meanwhile undergone substantive change for the better." This is a key book for understanding the effort that a major philosopher has made a large part of his life's work: to naturalize epistemology in the twentieth century. The book is concise and elegantly written, as one would expect, and does not assume the reader's previous acquaintance with Quine's writings. Throughout, it is marked by Quine's wit and economy of style.

The Logical Leap: Induction in Physics


David Harriman - 2010
    Inspired by and expanding on a series of lectures presented by Leonard Peikoff, David Harriman presents a fascinating answer to the problem of induction-the epistemological question of how we can know the truth of inductive generalizations.Ayn Rand presented her revolutionary theory of concepts in her book Introduction to Objectivist Epistemology. As Dr. Peikoff subsequently explored the concept of induction, he sought out David Harriman, a physicist who had taught philosophy, for his expert knowledge of the scientific discovery process.Here, Harriman presents the result of a collaboration between scientist and philosopher. Beginning with a detailed discussion of the role of mathematics and experimentation in validating generalizations in physics-looking closely at the reasoning of scientists such as Galileo, Kepler, Newton, Lavoisier, and Maxwell-Harriman skillfully argues that the inductive method used in philosophy is in principle indistinguishable from the method used in physics.

Wholeness and the Implicate Order


David Bohm - 1980
    Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality.

The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age


John Horgan - 1996
    Who else routinely interviews the likes of Lynn Margulis, Roger Penrose, Francis Crick, Richard Dawkins, Freeman Dyson, Murray Gell-Mann, Stephen Jay Gould, Stephen Hawking, Thomas Kuhn, Chris Langton, Karl Popper, Stephen Weinberg, and E.O. Wilson, with the freedom to probe their innermost thoughts?In The End Of Science, Horgan displays his genius for getting these larger-than-life figures to be simply human, and scientists, he writes, ”are rarely so human...so at ther mercy of their fears and desires, as when they are confronting the limits of knowledge.”This is the secret fear that Horgan pursues throughout this remarkable book: Have the big questions all been answered? Has all the knowledge worth pursuing become known? Will there be a final ”theory of everything” that signals the end? Is the age of great discoverers behind us? Is science today reduced to mere puzzle solving and adding detains to existing theories?Horgan extracts surprisingly candid answers to there and other delicate questions as he discusses God, Star Trek, superstrings, quarks, plectics, consciousness, Neural Darwinism, Marx's view of progress, Kuhn's view of revolutions, cellular automata, robots, and the Omega Point, with Fred Hoyle, Noam Chomsky, John Wheeler, Clifford Geertz, and dozens of other eminent scholars. The resulting narrative will both infuriate and delight as it mindles Horgan's smart, contrarian argument for ”endism” with a witty, thoughtful, even profound overview of the entire scientific enterprise.Scientists have always set themselves apart from other scholars in the belief that they do not construct the truth, they discover it. Their work is not interpretation but simple revelation of what exists in the empirical universe. But science itself keeps imposing limits on its own power. Special relativity prohibits the transmission of matter or information as speeds faster than that of light; quantum mechanics dictates uncertainty; and chaos theory confirms the impossibility of complete prediction. Meanwhile, the very idea of scientific rationality is under fire from Neo-Luddites, animal-rights acitivists, religious fundamentalists, and New Agers alike.As Horgan makes clear, perhaps the greatest threat to science may come from losing its special place in the hierarchy of disciplines, being reduced to something more akin to literaty criticism as more and more theoreticians engage in the theory twiddling he calls ”ironic science.” Still, while Horgan offers his critique, grounded in the thinking of the world's leading researchers, he offers homage too. If science is ending, he maintains, it is only because it has done its work so well.

Theory and Reality: An Introduction to the Philosophy of Science


Peter Godfrey-Smith - 2003
    The result is a completely accessible introduction to the main themes of the philosophy of science. Intended for undergraduates and general readers with no prior background in philosophy, Theory and Reality covers logical positivism; the problems of induction and confirmation; Karl Popper's theory of science; Thomas Kuhn and "scientific revolutions"; the views of Imre Lakatos, Larry Laudan, and Paul Feyerabend; and challenges to the field from sociology of science, feminism, and science studies. The book then looks in more detail at some specific problems and theories, including scientific realism, the theory-ladeness of observation, scientific explanation, and Bayesianism. Finally, Godfrey-Smith defends a form of philosophical naturalism as the best way to solve the main problems in the field. Throughout the text he points out connections between philosophical debates and wider discussions about science in recent decades, such as the infamous "science wars." Examples and asides engage the beginning student; a glossary of terms explains key concepts; and suggestions for further reading are included at the end of each chapter. However, this is a textbook that doesn't feel like a textbook because it captures the historical drama of changes in how science has been conceived over the last one hundred years.Like no other text in this field, Theory and Reality combines a survey of recent history of the philosophy of science with current key debates in language that any beginning scholar or critical reader can follow.

Ancient Earth Mysteries


J.C. Vintner - 2011
    It's extremely selfish to think we are the only existing intelligent life. Science and religion are on the verge of discovering the truth. Super ancient societies and their archaeological evidence uncovered to this day is a vault of stored information waiting to be unlocked. All we need to do is find the key. Help us uncover the truth by learning about Ancient Earth Mysteries.

Eternity: God, Soul, New Physics


Trevelyan - 2013
    This is a book about how many of the 'big' philosophical and religious questions that have puzzled mankind for centuries can be answered by recent breakthroughs in science.

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

The Particles of the Universe


Jeff Yee - 2012
    Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.

The Ultimate Fate Of The Universe


Jamal Nazrul Islam - 1983
    To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.

Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life


Steven Shapin - 1985
    Does the story of Roundheads and Restoration have something to do with the origins of experimental sci-ence? Schaffer and Shapin believed it does.Focusing on the debates between Boyle and his archcritic Thomas Hobbes over the air-pump, the authors proposed that solutions to the problem of knowledge are solutions to the problem of social order. Both Boyle and Hobbes were looking for ways of establishing knowledge that did not decay into ad hominem attacks and political division. Boyle proposed the experiment as cure. He argued that facts should be manufactured by machines like the air-pump so that gentlemen could witness the experiments and produce knowledge that everyone agreed on. Hobbes, by contrast, looked for natural law and viewed experiments as the artificial, unreliable products of an exclusive guild.The new approaches taken in Leviathan and the Air-Pump have been enormously influential on historical studies of science. Shapin and Schaffer found a moment of scientific revolution and showed how key scientific givens--facts, interpretations, experiment, truth--were fundamental to a new political order. Shapin and Schaffer were also innovative in their ethnographic approach. Attempting to understand the work habits, rituals, and social structures of a remote, unfamiliar group, they argued that politics were tied up in what scientists did, rather than what they said.