Beyond Weird


Philip Ball - 2018
    But when Feynman said he didn’t understand quantum mechanics, he didn’t mean that he couldn’t do it – he meant that’s all he could do. He didn’t understand what the maths was saying: what quantum mechanics tells us about reality.Over the past decade or so, the enigma of quantum mechanics has come into sharper focus. We now realise that quantum mechanics is less about particles and waves, uncertainty and fuzziness, than a theory about information: about what can be known and how.This is more disturbing than our bad habit of describing the quantum world as ‘things behaving weirdly’ suggests. It calls into question the meanings and limits of space and time, cause and effect, and knowledge itself.The quantum world isn’t a different world: it is our world, and if anything deserves to be called ‘weird’, it’s us. This exhilarating book is about what quantum maths really means – and what it doesn’t mean.

Brilliant Blunders: From Darwin to Einstein - Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe


Mario Livio - 2013
    Nobody is perfect. And that includes five of the greatest scientists in history—Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. But the mistakes that these great luminaries made helped advance science. Indeed, as Mario Livio explains, science thrives on error, advancing when erroneous ideas are disproven.As a young scientist, Einstein tried to conceive of a way to describe the evolution of the universe at large, based on General Relativity—his theory of space, time, and gravity. Unfortunately he fell victim to a misguided notion of aesthetic simplicity. Fred Hoyle was an eminent astrophysicist who ridiculed an emerging theory about the origin of the universe that he dismissively called “The Big Bang.” The name stuck, but Hoyle was dead wrong in his opposition.They, along with Darwin (a blunder in his theory of Natural Selection), Kelvin (a blunder in his calculation of the age of the earth), and Pauling (a blunder in his model for the structure of the DNA molecule), were brilliant men and fascinating human beings. Their blunders were a necessary part of the scientific process. Collectively they helped to dramatically further our knowledge of the evolution of life, the Earth, and the universe.

What If? Serious Scientific Answers to Absurd Hypothetical Questions


Randall Munroe - 2014
    It now has 600,000 to a million page hits daily. Every now and then, Munroe would get emails asking him to arbitrate a science debate. 'My friend and I were arguing about what would happen if a bullet got struck by lightning, and we agreed that you should resolve it . . . ' He liked these questions so much that he started up What If. If your cells suddenly lost the power to divide, how long would you survive? How dangerous is it, really, to be in a swimming pool in a thunderstorm? If we hooked turbines to people exercising in gyms, how much power could we produce? What if everyone only had one soulmate?When (if ever) did the sun go down on the British empire? How fast can you hit a speed bump while driving and live?What would happen if the moon went away?In pursuit of answers, Munroe runs computer simulations, pores over stacks of declassified military research memos, solves differential equations, and consults with nuclear reactor operators. His responses are masterpieces of clarity and hilarity, studded with memorable cartoons and infographics. They often predict the complete annihilation of humankind, or at least a really big explosion. Far more than a book for geeks, WHAT IF: Serious Scientific Answers to Absurd Hypothetical Questions explains the laws of science in operation in a way that every intelligent reader will enjoy and feel much the smarter for having read.

The Inflationary Universe: The Quest for a New Theory of Cosmic Origins


Alan Guth - 1997
    Guth’s startling theory—widely regarded as one of the most important contributions to science during the twentieth century—states that the big bang was set into motion by a period of hyper-rapid “inflation,” lasting only a billion-trillion-billionth of a second. The Inflationary Universe is the passionate story of one leading scientist’s effort to look behind the cosmic veil and explain how the universe began.

The God Particle: If the Universe Is the Answer, What Is the Question?


Leon M. Lederman - 1993
    The book takes us from the Greeks' earliest scientific observations through Einstein and beyond in an inspiring celebration of human curiosity. It ends with the quest for the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe. With a new preface by Lederman, The God Particle will leave you marveling at our continuing pursuit of the infinitesimal.

The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World


Peter D. Ward - 2000
    --Publishers WeeklyScience has worked hard to piece together the story of the evolution of our world up to this point, but only recently have we developed the understanding and the tools to describe the entire life cycle of our planet. Peter D. Ward and Donald Brownlee, a geologist and an astronomer respectively, are in the vanguard of the new field of astrobiology. Combining their knowledge of how the critical sustaining systems of our planet evolve through time with their understanding of how stars and solar systems grow and change throughout their own life cycles, the authors tell the story of the second half of Earth's life. In this masterful melding of groundbreaking research and captivating, eloquent science writing, Ward and Brownlee provide a comprehensive portrait of Earth's life cycle that allows us to understand and appreciate how the planet sustains itself today, and offers us a glimpse of our place in the cosmic order.

Cosmos: Possible Worlds


Ann Druyan - 2019
    From the emergence of life at deep-sea vents to solar-powered starships sailing through the galaxy, from the Big Bang to the intricacies of intelligence in many life forms, acclaimed author Ann Druyan documents where humanity has been and where it is going, using her unique gift of bringing complex scientific concepts to life. With evocative photographs and vivid illustrations, she recounts momentous discoveries, from the Voyager missions in which she and her husband, Carl Sagan, participated to Cassini-Huygens's recent insights into Saturn's moons. This breathtaking sequel to Sagan's masterpiece explains how we humans can glean a new understanding of consciousness here on Earth and out in the cosmos--again reminding us that our planet is a pale blue dot in an immense universe of possibility.

Time Travel in Einstein's Universe: The Physical Possibilities of Travel Through Time


J. Richard Gott III - 2001
    Richard Gott leads time travel out of the world of H. G. Wells and into the realm of scientific possibility. Building on theories posited by Einstein and advanced by scientists such as Stephen Hawking and Kip Thorne, Gott explains how time travel can actually occur. He describes, with boundless enthusiasm and humor, how travel to the future is not only possible but has already happened, and he contemplates whether travel to the past is also conceivable. Notable not only for its extraordinary subject matter and scientific brilliance, Time Travel in Einstein’s Universe is a delightful and captivating exploration of the surprising facts behind the science fiction of time travel.

The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet


Robert M. Hazen - 2012
    Hazen writes of how the co-evolution of the geosphere and biosphere—of rocks and living matter—has shaped our planet into the only one of its kind in the Solar System, if not the entire cosmos.With an astrobiologist’s imagination, a historian’s perspective, and a naturalist’s passion for the ground beneath our feet, Hazen explains how changes on an atomic level translate into dramatic shifts in Earth’s makeup over its 4.567 billion year existence. He calls upon a flurry of recent discoveries to portray our planet’s many iterations in vivid detail. Through his theory of “co-evolution,” we learn how reactions between organic molecules and rock crystals may have generated Earth’s first organisms, which in turn are responsible for more than two-thirds of the mineral varieties on the planet.The Story of Earth is also the story of the pioneering men and women behind the sciences. Readers will meet black-market meteorite hawkers of the Sahara Desert, the gun-toting Feds who guarded the Apollo missions’ lunar dust, and the World War II Navy officer whose super-pressurized “bomb”—recycled from military hardware—first simulated the molten rock of Earth’s mantle. As a mentor to a new generation of scientists, Hazen introduces the intrepid young explorers whose dispatches from Earth’s harshest landscapes will revolutionize geology.

Gravitation


Charles W. Misner - 1973
    These sections together make an appropriate one-term advanced/graduate level course (mathematical prerequisites: vector analysis and simple partial-differential equations). The book is printed to make it easy for readers to identify these sections.• The remaining Track 2 material provides a wealth of advanced topics instructors can draw from to flesh out a two-term course, with Track 1 sections serving as prerequisites.

The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements


Sam Kean - 2010
    The fascinating tales in The Disappearing Spoon follow carbon, neon, silicon, gold and every single element on the table as they play out their parts in human history, finance, mythology, conflict, the arts, medicine and the lives of the (frequently) mad scientists who discovered them.Why did a little lithium (Li, 3) help cure poet Robert Lowell of his madness? And how did gallium (Ga, 31) become the go-to element for laboratory pranksters? The Disappearing Spoon has the answers, fusing science with the classic lore of invention, investigation, discovery and alchemy, from the big bang through to the end of time.

Professor Stewart's Incredible Numbers


Ian Stewart - 2015
    In Professor Stewart’s Incredible Numbers, Ian Stewart offers a delightful introduction to the numbers that surround us, from the common (Pi and 2) to the uncommon but no less consequential (1.059463 and 43,252,003,274,489,856,000). Along the way, Stewart takes us through prime numbers, cubic equations, the concept of zero, the possible positions on the Rubik’s Cube, the role of numbers in human history, and beyond! An unfailingly genial guide, Stewart brings his characteristic wit and erudition to bear on these incredible numbers, offering an engaging primer on the principles and power of math.

The End of Time: The Next Revolution in Our Understanding of the Universe


Julian Barbour - 1999
    Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless `nows'. In The End of Time, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity - which denies the existence of a unique time - and quantum mechanics - which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. The End of Time is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.

What If the Earth Had Two Moons?: And Nine Other Thought-Provoking Speculations on the Solar System


Neil F. Comins - 2010
    In What If the Earth Had Two Moons, Neil Comins leads us on a fascinating ten-world journey as we explore what our planet would be like under alternative astronomical conditions. In each case, the Earth would be different, often in surprising ways. The title chapter, for example, gives us a second moon orbiting closer to Earth than the one we have now. The night sky is a lot brighter, but that won't last forever. Eventually the moons collide, with one extra-massive moon emerging after a period during which Earth sports a Saturn-like ring. This and nine and other speculative essays provide us with insights into the Earth as it exists today, while shedding new light on the burgeoning search for life on planets orbiting other stars. Appealing to adult and young adult readers alike, this book follows on the author's previous bestseller, What If the Moon Didn't Exist?, with completely new scenarios backed by the latest astronomical research.

Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace


Leonard Mlodinow - 2001
    Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.