Book picks similar to
Matrix Algebra Useful for Statistics by Shayle R. Searle
matematikk
math-stat-ml-ai
matrix-analysis
statistics
An Investigation of the Laws of Thought
George Boole - 1854
A timeless introduction to the field and a landmark in symbolic logic, showing that classical logic can be treated algebraically.
Burn Math Class: And Reinvent Mathematics for Yourself
Jason Wilkes - 2016
In Burn Math Class, Jason Wilkes takes the traditional approach to how we learn math -- with its unwelcoming textbooks, unexplained rules, and authoritarian assertions-and sets it on fire. Focusing on how mathematics is created rather than on mathematical facts, Wilkes teaches the subject in a way that requires no memorization and no prior knowledge beyond addition and multiplication. From these simple foundations, Burn Math Class shows how mathematics can be (re)invented from scratch without preexisting textbooks and courses. We can discover math on our own through experimentation and failure, without appealing to any outside authority. When math is created free from arcane notations and pretentious jargon that hide the simplicity of mathematical concepts, it can be understood organically -- and it becomes fun! Following this unconventional approach, Burn Math Class leads the reader from the basics of elementary arithmetic to various "advanced" topics, such as time-dilation in special relativity, Taylor series, and calculus in infinite-dimensional spaces. Along the way, Wilkes argues that orthodox mathematics education has been teaching the subject backward: calculus belongs before many of its so-called prerequisites, and those prerequisites cannot be fully understood without calculus. Like the smartest, craziest teacher you've ever had, Wilkes guides you on an adventure in mathematical creation that will radically change the way you think about math. Revealing the beauty and simplicity of this timeless subject, Burn Math Class turns everything that seems difficult about mathematics upside down and sideways until you understand just how easy math can be.
Algebra - The Very Basics
Metin Bektas - 2014
This book picks you up at the very beginning and guides you through the foundations of algebra using lots of examples and no-nonsense explanations. Each chapter contains well-chosen exercises as well as all the solutions. No prior knowledge is required. Topics include: Exponents, Brackets, Linear Equations and Quadratic Equations. For a more detailed table of contents, use the "Look Inside" feature. From the author of "Great Formulas Explained" and "Physics! In Quantities and Examples".
An Introduction to Genetic Algorithms
Melanie Mitchell - 1996
This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
William J. Cook - 2011
In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.
Using Econometrics: A Practical Guide
A.H. Studenmund - 1987
"Using Econometrics: A Practical Guide "provides readers with a practical introduction that combines single-equation linear regression analysis with real-world examples and exercises. This text also avoids complex matrix algebra and calculus, making it an ideal text for beginners. New problem sets and added support make "Using Econometrics" modern and easier to use.
J.G. Ballard Conversations
J.G. Ballard - 2005
G. Ballard has provided thoughtful remarks on the state of the world for decades. J.G. Ballard Conversations brings together several of Ballard's latest interviews and gives readers penetrating insight into the mind of one of the freshest thinkers at work today. Covering topics such at the 9/11 terrorist attacks, the evolution of sexual relationships, and our strange, immersive celebrity culture, this book is a fount of provocative takes on the things that matter. Rounded out with rare photographs of Ballard and supplemental resources, J.G. Ballard Conversations is a necessary item for anyone interested in the modern world.
Becoming Human: Our Past, Present and Future
Scientific American - 2013
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Waking Up Blind Lawsuits Over Eye Surgery
Tom Harbin - 2009
The shocking story of blinded eyes, and the medical school that allowed it.
Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS
John K. Kruschke - 2010
Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884 0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke
Data Science
John D. Kelleher - 2018
Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges.It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Kurt Gödel - 1992
Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Entropy Demystified: The Second Law Reduced To Plain Common Sense
Arieh Ben-Naim - 2007
The author paves the way for readers to discover for themselves what entropy is, how it changes, and most importantly, why it always changes in one direction in a spontaneous process.