Subjects Matter: Exceeding Standards Through Powerful Content-Area Reading


Harvey Daniels - 2014
    This book is about making those encounters as compelling as we can make them." -Harvey "Smokey" Daniels and Steven ZemelmanWe are specialists to the bone-in science, math, social studies, art, music, business, and foreign language. But now, the Common Core and state standards require us to help our students better understand the distinctive texts in our subject areas. "Nobody's making us into reading teachers," write Smokey Daniels and Steve Zemelman, "but we must become teachers of disciplinary thinking through our students' reading."If this shift sounds like a tough one, Subjects Matter, Second Edition is your solution. Smokey and Steve, two of America's most popular educators, share exactly what you need to help students read your nonfiction content closely and strategically: 27 proven teaching strategies that help meet-and exceed-the standards how-to suggestions for engaging kids with content through wide, real-world reading a lively look at using "boring" textbooks motivating instruction that's powered by student collaboration specifics for helping struggling readers succeed.Subjects Matter, Second Edition enables deep, thoughtful learning for your students, while keeping the irreverent, inspiring heart that's made the first edition indispensable. You'll discover fresh and re-energized lessons, completely updated research, and vibrant vignettes from new colleagues and old friends who have as much passion for their subjects as you do."We'll be using methods particular to our fields as well as engaging reading materials that help students understand and remember our content better," write Smokey and Steve. "We can realize that vision of the light going on in kids' heads and maybe fill them with enthusiasm about the amazing subject matter that we have to offer. Sound good? Let's get to work." Read a sample chapter from Subjects Matter, Second Edition.

Introductory Statistics with R


Peter Dalgaard - 2002
    It can be freely downloaded and it works on multiple computer platforms. This book provides an elementary introduction to R. In each chapter, brief introductory sections are followed by code examples and comments from the computational and statistical viewpoint. A supplementary R package containing the datasets can be downloaded from the web.

Access 2007: The Missing Manual


Matthew MacDonald - 2006
    It runs on PCs rather than servers and is ideal for small- to mid-sized businesses and households. But Access is still intimidating to learn. It doesn't help that each new version crammed in yet another set of features; so many, in fact, that even the pros don't know where to find them all. Access 2007 breaks this pattern with some of the most dramatic changes users have seen since Office 95. Most obvious is the thoroughly redesigned user interface, with its tabbed toolbar (or "Ribbon") that makes features easy to locate and use. The features list also includes several long-awaited changes. One thing that hasn't improved is Microsoft's documentation. To learn the ins and outs of all the features in Access 2007, Microsoft merely offers online help.Access 2007: The Missing Manual was written from the ground up for this redesigned application. You will learn how to design complete databases, maintain them, search for valuable nuggets of information, and build attractive forms for quick-and-easy data entry. You'll even delve into the black art of Access programming (including macros and Visual Basic), and pick up valuable tricks and techniques to automate common tasks -- even if you've never touched a line of code before. You will also learn all about the new prebuilt databases you can customize to fit your needs, and how the new complex data feature will simplify your life. With plenty of downloadable examples, this objective and witty book will turn an Access neophyte into a true master.

Calculus: The Classic Edition


Earl W. Swokowski - 1991
    Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.

Storytelling with Data: A Data Visualization Guide for Business Professionals


Cole Nussbaumer Knaflic - 2015
    You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!

Stat-Spotting: A Field Guide to Identifying Dubious Data


Joel Best - 2008
    But all too often, even the most respected publications present numbers that are miscalculated, misinterpreted, hyped, or simply misleading. Following on the heels of his highly acclaimed Damned Lies and Statistics and More Damned Lies and Statistics, Joel Best now offers this practical field guide to help everyone identify questionable statistics. Entertaining, informative, and concise, Stat-Spotting is essential reading for people who want to be more savvy and critical consumers of news and information.Stat-Spotting features:* Pertinent examples from today's news, including the number of deaths reported in Iraq, the threat of secondhand smoke, the increase in the number of overweight Americans, and many more* A commonsense approach that doesn't require advanced math or statistics

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Introducing Regular Expressions


Michael J. Fitzgerald - 2012
    You’ll learn the fundamentals step-by-step with the help of numerous examples, discovering first-hand how to match, extract, and transform text by matching specific words, characters, and patterns.Regular expressions are an essential part of a programmer’s toolkit, available in various Unix utlilities as well as programming languages such as Perl, Java, JavaScript, and C#. When you’ve finished this book, you’ll be familiar with the most commonly used syntax in regular expressions, and you’ll understand how using them will save you considerable time.Discover what regular expressions are and how they workLearn many of the differences between regular expressions used with command-line tools and in various programming languagesApply simple methods for finding patterns in text, including digits, letters, Unicode characters, and string literalsLearn how to use zero-width assertions and lookaroundsWork with groups, backreferences, character classes, and quantifiersUse regular expressions to mark up plain text with HTML5

Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites


Matthew A. Russell - 2011
    You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

Artificial Intelligence: A Modern Approach


Stuart Russell - 1994
    The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa

Reading in the Dark: Using Film as a Tool in the English Classroom


John Golden - 2001
    Harness the students interest in film to help them engage critically with a range of media including visual and printed texts.

The Analysis of Biological Data


Michael C. Whitlock - 2008
    To reach this unique audience, Whitlock and Schluter motivate learning with interesting biological and medical examples; they emphasize intuitive understanding; and they focus on real data. The book covers basic topics in introductory statistics, including graphs, confidence intervals, hypothesis testing, comparison of means, regression, and designing experiments. It also introduces the principles behind such modern topics as likelihood, linear models, meta-analysis and computer-intensive methods. Instructors and students consistently praise the book's clear and engaging writing, strong visualization techniques, and its variety of fascinating and relevant biological examples.

R in Action


Robert Kabacoff - 2011
    The book begins by introducing the R language, including the development environment. Focusing on practical solutions, the book also offers a crash course in practical statistics and covers elegant methods for dealing with messy and incomplete data using features of R.About the TechnologyR is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data.About the BookR in Action is a language tutorial focused on practical problems. It presents useful statistics examples and includes elegant methods for handling messy, incomplete, and non-normal data that are difficult to analyze using traditional methods. And statistical analysis is only part of the story. You'll also master R's extensive graphical capabilities for exploring and presenting data visually. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's InsidePractical data analysis, step by stepInterfacing R with other softwareUsing R to visualize dataOver 130 graphsEight reference appendixes================================Table of ContentsPart I Getting startedIntroduction to RCreating a datasetGetting started with graphsBasic data managementAdvanced data managementPart II Basic methodsBasic graphsBasic statisticsPart III Intermediate methodsRegressionAnalysis of variancePower analysisIntermediate graphsRe-sampling statistics and bootstrappingPart IV Advanced methodsGeneralized linear modelsPrincipal components and factor analysisAdvanced methods for missing dataAdvanced graphics