Mastering Algorithms with Perl


Jon Orwant - 1999
    Computer scientists have identified many techniques that a wide range of programs need, such as: Fuzzy pattern matching for text (identify misspellings!) Finding correlations in data Game-playing algorithms Predicting phenomena such as Web traffic Polynomial and spline fitting Using algorithms explained in this book, you too can carry out traditional programming tasks in a high-powered, efficient, easy-to-maintain manner with Perl.This book assumes a basic understanding of Perl syntax and functions, but not necessarily any background in computer science. The authors explain in a readable fashion the reasons for using various classic programming techniques, the kind of applications that use them, and -- most important -- how to code these algorithms in Perl.If you are an amateur programmer, this book will fill you in on the essential algorithms you need to solve problems like an expert. If you have already learned algorithms in other languages, you will be surprised at how much different (and often easier) it is to implement them in Perl. And yes, the book even has the obligatory fractal display program.There have been dozens of books on programming algorithms, some of them excellent, but never before has there been one that uses Perl.The authors include the editor of The Perl Journal and master librarian of CPAN; all are contributors to CPAN and have archived much of the code in this book there."This book was so exciting I lost sleep reading it." Tom Christiansen

The Information: A History, a Theory, a Flood


James Gleick - 2011
    The story of information begins in a time profoundly unlike our own, when every thought and utterance vanishes as soon as it is born. From the invention of scripts and alphabets to the long-misunderstood talking drums of Africa, Gleick tells the story of information technologies that changed the very nature of human consciousness. He provides portraits of the key figures contributing to the inexorable development of our modern understanding of information: Charles Babbage, the idiosyncratic inventor of the first great mechanical computer; Ada Byron, the brilliant and doomed daughter of the poet, who became the first true programmer; pivotal figures like Samuel Morse and Alan Turing; and Claude Shannon, the creator of information theory itself. And then the information age arrives. Citizens of this world become experts willy-nilly: aficionados of bits and bytes. And we sometimes feel we are drowning, swept by a deluge of signs and signals, news and images, blogs and tweets. The Information is the story of how we got here and where we are heading.

Concepts, Techniques, and Models of Computer Programming


Peter Van Roy - 2004
    The book focuses on techniques of lasting value and explains them precisely in terms of a simple abstract machine. The book presents all major programming paradigms in a uniform framework that shows their deep relationships and how and where to use them together.After an introduction to programming concepts, the book presents both well-known and lesser-known computation models ("programming paradigms"). Each model has its own set of techniques and each is included on the basis of its usefulness in practice. The general models include declarative programming, declarative concurrency, message-passing concurrency, explicit state, object-oriented programming, shared-state concurrency, and relational programming. Specialized models include graphical user interface programming, distributed programming, and constraint programming. Each model is based on its kernel language—a simple core language that consists of a small number of programmer- significant elements. The kernel languages are introduced progressively, adding concepts one by one, thus showing the deep relationships between different models. The kernel languages are defined precisely in terms of a simple abstract machine. Because a wide variety of languages and programming paradigms can be modeled by a small set of closely related kernel languages, this approach allows programmer and student to grasp the underlying unity of programming. The book has many program fragments and exercises, all of which can be run on the Mozart Programming System, an Open Source software package that features an interactive incremental development environment.

Writing for Computer Science


Justin Zobel - 1997
    For the most part the book is a discussion of good writing style and effective research strategies. Some of the material is accepted wisdom, some is controversial, and some is my opinions. Although the book is brief, it is designed to be comprehensive: some readers may be interested in exploring topics further, but for most readers this book should be suf?cient. The ?rst edition of this book was almost entirely about writing. This e- tion, partly in response to reader feedback and partly in response to issues that arose in my ownexperiences as an advisor, researcher, and referee, is also about research methods. Indeed, the two topics writing about and doing research are not clearly separated. It is a small step from asking how do I write? to askingwhatisitthatIwriteabout? As previously, the guidance on writing focuses on research, but much of the material is applicable to general technical and professional communication. Likewise, the guidance on the practice of research has broader lessons. A pr- titioner trying a new algorithm or explaining to colleagues why one solution is preferable to another should be con?dent that the arguments are built on robust foundations. And, while this edition has a stronger emphasis on research than did the ?rst, nothing has been deleted; there is additional material on research, but the guidance on writing has not been taken away."

Understanding and Using C Pointers


Richard Reese - 2013
    With this practical book, you’ll learn how pointers provide the mechanism to dynamically manipulate memory, enhance support for data structures, and enable access to hardware. Author Richard Reese shows you how to use pointers with arrays, strings, structures, and functions, using memory models throughout the book.Difficult to master, pointers provide C with much flexibility and power—yet few resources are dedicated to this data type. This comprehensive book has the information you need, whether you’re a beginner or an experienced C or C++ programmer or developer.Get an introduction to pointers, including the declaration of different pointer typesLearn about dynamic memory allocation, de-allocation, and alternative memory management techniquesUse techniques for passing or returning data to and from functionsUnderstand the fundamental aspects of arrays as they relate to pointersExplore the basics of strings and how pointers are used to support themExamine why pointers can be the source of security problems, such as buffer overflowLearn several pointer techniques, such as the use of opaque pointers, bounded pointers and, the restrict keyword

Probabilistic Robotics


Sebastian Thrun - 2005
    Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

Algorithms in a Nutshell


George T. Heineman - 2008
    Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma


Alan Turing - 2004
    In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.

Understanding Digital Signal Processing


Richard G. Lyons - 1996
    This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Windows Internals, Part 1: Covering Windows Server 2008 R2 and Windows 7


Mark E. Russinovich - 2012
    Led by three renowned internals experts, this classic guide is fully updated for Windows 7 and Windows Server 2008 R2—and now presents its coverage in two volumes.As always, you get critical insider perspectives on how Windows operates. And through hands-on experiments, you’ll experience its internal behavior firsthand—knowledge you can apply to improve application design, debugging, system performance, and support.In Part 1, you will:Understand how core system and management mechanisms work—including the object manager, synchronization, Wow64, Hyper-V, and the registryExamine the data structures and activities behind processes, threads, and jobsGo inside the Windows security model to see how it manages access, auditing, and authorizationExplore the Windows networking stack from top to bottom—including APIs, BranchCache, protocol and NDIS drivers, and layered servicesDig into internals hands-on using the kernel debugger, performance monitor, and other tools

Learning OpenCV: Computer Vision with the OpenCV Library


Gary Bradski - 2008
    Freeman, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyLearning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data. Computer vision is everywhere-in security systems, manufacturing inspection systems, medical image analysis, Unmanned Aerial Vehicles, and more. It stitches Google maps and Google Earth together, checks the pixels on LCD screens, and makes sure the stitches in your shirt are sewn properly. OpenCV provides an easy-to-use computer vision framework and a comprehensive library with more than 500 functions that can run vision code in real time.Learning OpenCV will teach any developer or hobbyist to use the framework quickly with the help of hands-on exercises in each chapter. This book includes:A thorough introduction to OpenCV Getting input from cameras Transforming images Segmenting images and shape matching Pattern recognition, including face detection Tracking and motion in 2 and 3 dimensions 3D reconstruction from stereo vision Machine learning algorithms Getting machines to see is a challenging but entertaining goal. Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book you need to get started.

Machine Learning in Action


Peter Harrington - 2011
    "Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.

Linear Algebra


Georgi E. Shilov - 1971
    Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.

Fundamentals of Database Systems


Ramez Elmasri - 1989
    It features excellent examples and access to Addison Wesley's database Web site that includes further teaching, tutorials and many useful student resources.