Book picks similar to
Powers of Ten by Philip Morrison
science
non-fiction
favorites
nonfiction
At Home in the Universe: The Search for the Laws of Self-Organization and Complexity
Stuart A. Kauffman - 1995
At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of greatcivilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertilemix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is agreat undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls order for free, that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a newentity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much likethe phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not ahighly improbable chance event, but almost inevitable). Kauffman uses the basic insight of order for free to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science ofcomplexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules tofind new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element toKauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it a landmark and a classic. And Nobel Laureate Philip Anderson wrote that there are few people in this world who ever ask the right questions of science, and they are theones who affect its future most profoundly. Stuart Kauffman is one of these. In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.
The Physics of Superheroes
James Kakalios - 2006
Along the way he provides an engaging and witty commentary while introducing the lay reader to both classic and cutting-edge concepts in physics, including:What Superman's strength can tell us about the Newtonian physics of force, mass, and accelerationHow Iceman's and Storm's powers illustrate the principles of thermal dynamicsThe physics behind the death of Spider-Man's girlfriend Gwen StacyWhy physics professors gone bad are the most dangerous evil geniuses!
The Physics Book: Big Ideas Simply Explained
D.K. Publishing - 2020
With the focus firmly on unpicking the thought behind each theory - as well as exploring when and how each idea and breakthrough came about - seven themed chapters examine the history and developments in areas such as energy and matter, and electricity and magnetism, as well as quantum, nuclear, and particle physics.Eureka moments abound: from Pythagoras's observations of the pleasing harmonies created by vibrating strings, and Galileo's experiments with spheres, to Isaac Newton's apple and his conclusions about gravity and the laws of motion. You'll also learn about Albert Einstein's insights into relativity; how the accidental discovery of cosmic microwave background radiation confirmed the Big Bang theory; the search for the Higgs boson particle; and why most of our Universe is missing.If you've ever wondered exactly how physicists formulated - and proved - these abstract concepts, The Physics Book is the book for you.
The Science Book: Big Ideas Simply Explained
Rob Scott Colson - 2014
The Science Book
covers every area of science--astronomy, biology, chemistry, geology, math, and physics, and brings the greatest scientific ideas to life with fascinating text, quirky graphics, and pithy quotes.
Burn Math Class: And Reinvent Mathematics for Yourself
Jason Wilkes - 2016
In Burn Math Class, Jason Wilkes takes the traditional approach to how we learn math -- with its unwelcoming textbooks, unexplained rules, and authoritarian assertions-and sets it on fire. Focusing on how mathematics is created rather than on mathematical facts, Wilkes teaches the subject in a way that requires no memorization and no prior knowledge beyond addition and multiplication. From these simple foundations, Burn Math Class shows how mathematics can be (re)invented from scratch without preexisting textbooks and courses. We can discover math on our own through experimentation and failure, without appealing to any outside authority. When math is created free from arcane notations and pretentious jargon that hide the simplicity of mathematical concepts, it can be understood organically -- and it becomes fun! Following this unconventional approach, Burn Math Class leads the reader from the basics of elementary arithmetic to various "advanced" topics, such as time-dilation in special relativity, Taylor series, and calculus in infinite-dimensional spaces. Along the way, Wilkes argues that orthodox mathematics education has been teaching the subject backward: calculus belongs before many of its so-called prerequisites, and those prerequisites cannot be fully understood without calculus. Like the smartest, craziest teacher you've ever had, Wilkes guides you on an adventure in mathematical creation that will radically change the way you think about math. Revealing the beauty and simplicity of this timeless subject, Burn Math Class turns everything that seems difficult about mathematics upside down and sideways until you understand just how easy math can be.
Creation: How Science Is Reinventing Life Itself
Adam Rutherford - 2013
But as technology has advanced and our understanding of biology has deepened, the answer has evolved. For decades, scientists have been exploring the limits of nature by modifying and manipulating DNA, cells and whole organisms to create new ones that could never have existed on their own. In Creation, science writer Adam Rutherford explains how we are now radically exceeding the boundaries of evolution and engineering entirely novel creatures—from goats that produce spider silk in their milk to bacteria that excrete diesel to genetic circuits that identify and destroy cancer cells. As strange as some of these creations may sound, this new, synthetic biology is helping scientists develop radical solutions to some of the world’s most pressing crises—from food shortages to pandemic disease to climate change—and is paving the way for inventions once relegated to science fiction. Meanwhile, these advances are shedding new light on the biggest mystery of all—how did life begin? We know that every creature on Earth came from a single cell, sparked into existence four billion years ago. And as we come closer and closer to understanding the ancient root that connects all living things, we may finally be able to achieve a second genesis—the creation of new life where none existed before. Creation takes us on a journey four billion years in the making—from the very first cell to the ground-breaking biological inventions that will shape the future of our planet.
The Perfect Machine: Building the Palomar Telescope
Ronald Florence - 1994
As huge as the Pantheon of Rome and as heavy as the Statue of Liberty, this magnificent instrument is so precisely built that its seventeen-foot mirror was hand-polished to a tolerance of 2/1,000,000 of an inch. The telescope's construction drove some to the brink of madness, made others fearful that mortals might glimpse heaven, and transfixed an entire nation. Ronald Florence weaves into his account of the creation of "the perfect machine" a stirring chronicle of the birth of Big Science and a poignant rendering of an America mired in the depression yet reaching for the stars.
Gladiators, Pirates and Games of Trust: How Game Theory, Strategy and Probability Rule Our Lives
Haim Shapira - 2017
Game Theory is the mathematical formalization of interactive decision-making - it assumes that each player's goal is to maximize his/her benefit, whatever it may be. Players may be friends, foes, political parties, states, or any entity that behaves interactively, whether collectively or individually. One of the problems with game analysis is the fact that, as a player, it's very hard to know what would benefit each of the other players; some of us are not even clear about our own goals or what might actually benefit us. Haim Shapira uses multiple examples to explain what Game Theory is and how the different interactions between decision-makers can play out. In this book you will: Meet the Nobel Laureate John F Nash and familiarize yourself with his celebrated equilibrium Learn the basic ideas of the art of negotiation Visit the gladiators' ring and apply for a coaching position Build an airport and divide inheritance Issue ultimatums and learn to trust
Bursts: The Hidden Pattern Behind Everything We Do
Albert-László Barabási - 2010
But now, astonishing new research is revealing patterns in human behavior previously thought to be purely random. Precise, orderly, predictable patterns... Albert Laszlo Barabasi, already the world's preeminent researcher on the science of networks, describes his work on this profound mystery in Bursts, a stunningly original investigation into human nature. His approach relies on the digital reality of our world, from mobile phones to the Internet and email, because it has turned society into a huge research laboratory. All those electronic trails of time stamped texts, voicemails, and internet searches add up to a previously unavailable massive data set of statistics that track our movements, our decisions, our lives. Analysis of these trails is offering deep insights into the rhythm of how we do everything. His finding? We work and fight and play in short flourishes of activity followed by next to nothing. The pattern isn't random, it's "bursty." Randomness does not rule our lives in the way scientists have assumed up until now. Illustrating this revolutionary science, Barabasi artfully weaves together the story of a 16th century burst of human activity-a bloody medieval crusade launched in his homeland, Transylvania-with the modern tale of a contemporary artist hunted by the FBI through our post 9/11 surveillance society. These narratives illustrate how predicting human behavior has long been the obsession, sometimes the duty, of those in power. Barabási's astonishingly wide range of examples from seemingly unrelated areas include how dollar bills move around the U.S., the pattern everyone follows in writing email, the spread of epidemics, and even the flight patterns of albatross. In all these phenomena a virtually identical, mathematically described bursty pattern emerges.Bursts reveals what this amazing new research is showing us about where individual spontaneity ends and predictability in human behavior begins. The way you think about your own potential to do something truly extraordinary will never be the same.
507 Mechanical Movements: Mechanisms and Devices
Henry T. Brown - 1984
Spanning the first century of the Industrial Revolution, this 1868 compilation features simplified, concise illustrations of the mechanisms used in hydraulics, steam engines, pneumatics, presses, horologes, and scores of other machines.The movements of each of the 507 mechanisms are depicted in drawings on the left-hand page, and the facing page presents a brief description of the item's use and operation. Ranging from simple to intricately complex, the mechanisms offer a fascinating view of the variety of small components that constitute complex machinery. A detailed index provides easy reference to specific mechanisms.Inventors, tinkerers, and anyone with an interest in the history of invention and technology will find this volume a treasury of information and inspiration.
A Force of Nature: The Frontier Genius of Ernest Rutherford
Richard Reeves - 2007
Above all, perhaps, Rutherford and the young men working under him were the first to split the atom, unlocking tremendous forces—forces, as Rutherford himself predicted, that would bring us the atomic bomb.Rutherford, awarded a Nobel Prize and made Baron Rutherford by the queen of England, was also a great ambassador of science, coming to the aid of colleagues caught in the Nazi and Soviet regimes. Under Rutherford’s rigorous and boisterous direction, a whole new generation of remarkable physicists emerged. In Richard Re’s hands, Rutherford leaps off the page, a ruddy, genial man and a towering figure in scientific history.
Quantum Computing Since Democritus
Scott Aaronson - 2013
Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.
Life on Earth
David Attenborough - 1979
Told through an examination of animal and plant life today - with occasional juxtapositions of extinct fossil forms to reveal the origin of living creatures - "Life on Earth" is an astonishing pageant of life, with a cast of characters drawn from the whole range of living animals the world over. Attenborough's perceptive, dynamic approach to the evolution of some four million species of living organisms that populate the planet is to trace the most significant thread in the history of each major group. He then proceeds to explain from the evidence of living representatives and fossil remains why certain animals adapted and survived, evolved to more complex and "higher" forms of life, while others, by some inherent limitation imposed by their physiology or structure, failed and became extinct. "Life on Earth" is a book of wonders. A model of clarity and ease as a guide, Attenborough takes the reader around the world with him into jungles where orchids have petals that "impersonate" wasps to attract pollinating insects; to Australia, where honeypot ants force feed nectar to workers of a special caste, then hang them up by their forelegs like living storage jars; to remote mountains in Japan where little monkeys called macaques have learned to combat the winter snows by bathing in hot volcanic springs.
Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge
William Poundstone - 1988
This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.
Universe: The Definitive Visual Guide
Robert Dinwiddie - 2005
High school & older.