CCNA Routing and Switching Study Guide: Exams 100-101, 200-101, and 200-120


Todd Lammle - 2013
    This all-purpose CCNA study guide methodically covers all the objectives of the ICND1 (100-101) and ICND2 (200-101) exams as well as providing additional insight for those taking CCNA Composite (200-120) exam. It thoroughly examines operation of IP data networks, LAN switching technologies, IP addressing (IPv4/IPv6), IP routing technologies, IP services, network device security, troubleshooting, and WAN technologies.Valuable study tools such as a companion test engine that includes hundreds of sample questions, a pre-assessment test, and multiple practice exams. Plus, you'll also get access to hundreds of electronic flashcards, author files, and a network simulator.CCNA candidates may choose to take either the ICND1(100-101) and ICND2 (200-101) exams or the CCNA Composite exam (200-120); this study guide covers the full objectives of all three Written by bestselling Sybex study guide author Todd Lammle, an acknowledged authority on all things Cisco Covers essential Cisco networking topics such as operating an IP data network, IP addressing, switching and routing technologies, troubleshooting, network device security, and much more Includes a comprehensive set of study tools including practice exams, electronic flashcards, comprehensive glossary of key terms, videos, and a network simulator that can be used with the book's hands-on labs Bonus Content: Access to over 40 MicroNugget videos from CBT Nuggets CCNA Routing and Switching Study Guide prepares you for CCNA certification success.

How Data Science Is Transforming Health Care


Mike Loukides - 2012
    

Probabilistic Robotics


Sebastian Thrun - 2005
    Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

Introducing Windows 8.1 for It Professionals


Ed Bott - 2013
    It is offered for sale in print format as a convenience.Get a head start evaluating Windows 8.1 - with early technical insights from award-winning journalist and Windows expert Ed Bott. Based on the Windows 8.1 Preview release, this guide introduces new features and capabilities, with scenario-based advice on how Windows 8.1 can meet the needs of your business. Get the high-level overview you need to begin preparing your deployment now.Preview new features and enhancements, including:How features compare to Windows 7 and Windows XP The Windows 8.1 user experience Deployment Security features Internet Explorer 11 Delivering Windows apps Recovery options Networking and remote access Managing mobile devices Virtualization Windows RT 8.1

Introducing Windows Server 2012


Mitch Tulloch - 2012
    This practical introduction illuminates new features and capabilities, with scenarios demonstrating how the platform can meet the needs of your business.Based on beta software, this book provides the early, high-level information you need to begin preparing now for deployment and management. Topics include:Virtualization and cloud solutions Availability Provisioning and storage management Security and scalability Infrastructure options Server administration

Deep Learning


John D. Kelleher - 2019
    When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University

The Little Go Book


Karl Seguin - 2014
    It's aimed at developers who might not be quite comfortable with the idea of pointers and static typing.http://openmymind.net/The-Little-Go-B...

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

PROLOG: Programming for Artificial Intelligence


Ivan Bratko - 1986
    Divided into two parts, the first part of the book introduces the programming language Prolog, while the second part teaches Artificial Intelligence using Prolog as a tool for the implementation of AI techniques. Prolog has its roots in logic, however the main aim of this book is to teach Prolog as a practical programming tool. This text therefore concentrates on the art of using the basic mechanisms of Prolog to solve interesting problems. The third edition has been fully revised and extended to provide an even greater range of applications, which further enhance its value as a self-contained guide to Prolog, AI or AI Programming for students and professional programmers alike.

ZooKeeper: Distributed process coordination


Flavio Junqueira - 2013
    This practical guide shows how Apache ZooKeeper helps you manage distributed systems, so you can focus mainly on application logic. Even with ZooKeeper, implementing coordination tasks is not trivial, but this book provides good practices to give you a head start, and points out caveats that developers and administrators alike need to watch for along the way.In three separate sections, ZooKeeper contributors Flavio Junqueira and Benjamin Reed introduce the principles of distributed systems, provide ZooKeeper programming techniques, and include the information you need to administer this service.Learn how ZooKeeper solves common coordination tasksExplore the ZooKeeper API’s Java and C implementations and how they differUse methods to track and react to ZooKeeper state changesHandle failures of the network, application processes, and ZooKeeper itselfLearn about ZooKeeper’s trickier aspects dealing with concurrency, ordering, and configurationUse the Curator high-level interface for connection managementBecome familiar with ZooKeeper internals and administration tools

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition


Dan Jurafsky - 2000
    This comprehensive work covers both statistical and symbolic approaches to language processing; it shows how they can be applied to important tasks such as speech recognition, spelling and grammar correction, information extraction, search engines, machine translation, and the creation of spoken-language dialog agents. The following distinguishing features make the text both an introduction to the field and an advanced reference guide.- UNIFIED AND COMPREHENSIVE COVERAGE OF THE FIELDCovers the fundamental algorithms of each field, whether proposed for spoken or written language, whether logical or statistical in origin.- EMPHASIS ON WEB AND OTHER PRACTICAL APPLICATIONSGives readers an understanding of how language-related algorithms can be applied to important real-world problems.- EMPHASIS ON SCIENTIFIC EVALUATIONOffers a description of how systems are evaluated with each problem domain.- EMPERICIST/STATISTICAL/MACHINE LEARNING APPROACHES TO LANGUAGE PROCESSINGCovers all the new statistical approaches, while still completely covering the earlier more structured and rule-based methods.

Beginning Python: From Novice to Professional


Magnus Lie Hetland - 2005
    Based on "Practical Python," this newly-revised book is both an introduction and practical reference for a swath of Python-related programming topics, including addressing language internals, database integration, network programming, and web services. Advanced topics, such as extending Python and packaging/distributing Python applications, are also covered.Ten different projects illustrate the concepts introduced in the book. You will learn how to create a P2P file-sharing application and a web-based bulletin board, and how to remotely edit web-based documents and create games. Author Magnus Lie Hetland is an authority on Python and previously authored "Practical Python." He also authored the popular online guide, Instant Python Hacking, on which both books are based.

Algorithm Design


Jon Kleinberg - 2005
    The book teaches a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.