Book picks similar to
Grokking Deep Learning by Andrew Trask, Manning Publications by Andrew Trask
artificial-intelligence
code-design-books
comp-sci
x-ipad-technical
Convex Optimization
Stephen Boyd - 2004
A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.
Problem Solving with Algorithms and Data Structures Using Python
Bradley N. Miller - 2005
It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.
Cybernetics: or the Control and Communication in the Animal and the Machine
Norbert Wiener - 1948
It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review
Computer Networking: A Top-Down Approach
James F. Kurose - 2000
Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Introduction to Computation and Programming Using Python
John V. Guttag - 2013
It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.
Game Programming Gems
Mark DeLoura - 2000
But instead of spending hours and hours trying to develop your own answers, now you can find out how the pros do it! Game Programming Gems is a hands-on, comprehensive resource packed with a variety of game programming algorithms written by experts from the game industry and edited by Mark DeLoura, former software engineering lead for Nintendo of America, Inc. and now the newly appointed editor-in-chief of Game Developer magazine. From animation and artificial intelligence to Z-buffering, lighting calculations, weather effects, curved surfaces, mutliple layer Internet gaming, to music and sound effects, all of the major techniques needed to develop a competitive game engine are covered. Game Programming Gems is written in a style accessible to individuals with a range of expertise levels. All of the source code for each algorithm is included and can be used by advanced programmers immediately. For aspiring programmers, there is a detailed tutorial to work through before attempting the code, and suggestions for possible modifications and optimizations are included as well.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
Angular 4: From Theory To Practice: Build the web applications of tomorrow using the new Angular web framework from Google.
Asim Hussain - 2017
- Build an Angular 2 application from scratch using TypeScript and the Angular command line interface. - Write code using the paradigm of reactive programming with RxJS and Observables. - Know how to Unit Test Angular 2 using Jasmine, Karma and the Angular Test Bed The first chapter in the course is a quickstart where you dive straight into writing your first Angular 2 application. We use the web editor plunker so you can get stuck in writing code ASAP. In this quickstart you'll get a 50,000 foot view of the major features of Angular 2. Then chapter by chapter we go much deeper into each of these features. I'll cover the theory for that feature, using plunker as much as possible so you can try out the code yourself in a browser. Then you'll practice what you've learnt with either an online quiz or a set of flash cards. You are going to learn all about:- - Typescript & ES6 Javascript. - Components & Binding - Directives - Dependancy Injection & Services - Angular Modules & Bootstrapping your Angular application. - SPAs & Routing - Angular CLI - Forms - Reactive Programming with RXJs - HTTP - Unit Testing The ideal student is an existing web developer, with some JavaScript knowledge that wants to add Angular 2 to their skill set. Or perhaps you are an existing Angular 1 developer who wants to level up to Angular 2. You do need to be comfortable with at least the ES5 version of JavaScript. We'll be using a UI framework called twitter bootstrap throughout the course but you still must know HTML and some CSS.
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
AngularJS
Brad Green - 2013
This hands-on guide introduces you to AngularJS, the open source JavaScript framework that uses Model–view–controller (MVC) architecture, data binding, client-side templates, and dependency injection to create a much-needed structure for building web apps.Guided by two engineers who worked on AngularJS at Google, you’ll walk through the framework’s key features, and then build a working AngularJS app—from layout to testing, compiling, and debugging. You’ll learn how AngularJS helps reduce the complexity of your web app.Dive deep into Angular’s building blocks and learn how they work togetherGain maximum flexibility by separating logic, data, and presentation responsibilities with MVCAssemble your full app in the browser, using client-side templatesUse AngularJS directives to extend HTML with declarative syntaxCommunicate with the server and implement simple caching with the $http serviceUse dependency injection to improve refactoring, testability, and multiple environment designGet code samples for common problems you face in most web apps
Head First SQL
Lynn Beighley - 2007
Using the latest research in neurobiology, cognitive science, and learning theory to craft a multi-sensory SQL learning experience, Head First SQL has a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep. Maybe you've written some simple SQL queries to interact with databases. But now you want more, you want to really dig into those databases and work with your data. Head First SQL will show you the fundamentals of SQL and how to really take advantage of it. We'll take you on a journey through the language, from basic INSERT statements and SELECT queries to hardcore database manipulation with indices, joins, and transactions. We all know "Data is Power" - but we'll show you how to have "Power over your Data". Expect to have fun, expect to learn, and expect to be querying, normalizing, and joining your data like a pro by the time you're finished reading!
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data