Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law


Peter Woit - 2006
    In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.

Extraterrestrial: The First Sign of Intelligent Life Beyond Earth


Avi Loeb - 2021
    In late 2017, scientists at a Hawaiian observatory glimpsed an object soaring through our inner solar system, moving so quickly that it could only have come from another star. Avi Loeb, Harvard’s top astronomer, showed it was not an asteroid; it was moving too fast along a strange orbit, and left no trail of gas or debris in its wake. There was only one conceivable explanation: the object was a piece of advanced technology created by a distant alien civilization.   In Extraterrestrial, Loeb takes readers inside the thrilling story of the first interstellar visitor to be spotted in our solar system. He outlines his controversial theory and its profound implications: for science, for religion, and for the future of our species and our planet. A mind-bending journey through the furthest reaches of science, space-time, and the human imagination, Extraterrestrial challenges readers to aim for the stars—and to think critically about what’s out there, no matter how strange it seems.

A User's Guide to the Universe: Surviving the Perils of Black Holes, Time Paradoxes, and Quantum Uncertainty


Dave Goldberg - 2009
    Even the novice will be able to follow along, as the topics are addressed using plain English and (almost) no equations. Veterans of popular physics will also find their nagging questions addressed, like whether the universe can expand faster than light, and for that matter, what the universe is expanding into anyway.Gives a one-stop tour of all the big questions that capture the public imagination including string theory, quantum mechanics, parallel universes, and the beginning of timeExplains serious science in an entertaining, conversational, and easy-to-understand wayIncludes dozens of delightfully groan-worthy cartoons that explain everything from special relativity to Dark Matter Filled with fascinating information and insights, this book will both deepen and transform your understanding of the universe.

Atom: Journey Across the Subatomic Cosmos


Isaac Asimov - 1991
    If you've been searching for a basic text on how the atom works, this is it." --Booklist "A masterpiece."--OmniThe legendary Isaac Asimov starts what is perhaps the most fascinating of all his books with a simple query: how finely can a piece of matter be divided? But like many simple questions, this one leads us on a far-flung quest for a final answer, a search that becomes a series of beautifully structured building blocks of knowledge.It begins with the earliest speculations and investigations by the Greeks and Romans, and then, step by step and century by century, it traces the path of discovery that revealed more and more of the nature of the atom, of light, of gravity, of the electromagnetic force--and even the nature and structure of the universe.Atom also encompasses such phenomena as light and electricity; the protons, neutrons and quarks that are the fundamental units of the universe; hard-to-observe "anti-particles"; and other strange bits of matter that challenge our assumptions about the very nature of space and time.Atom is the only book of its kind, by the renowned author whose genius for bringing clarity and excitement to complex subjects has made him the most celebrated science author of our time.

Genome: the Autobiography of a Species in 23 Chapters


Matt Ridley - 1999
    

The Quark and the Jaguar: Adventures in the Simple and the Complex


Murray Gell-Mann - 1994
    Nobel laureate Murray Gell-Mann offers a uniquely personal and unifying vision of the relationship between the fundamental laws of physics and the complexity and diversity of the natural world.

This Explains Everything: Deep, Beautiful, and Elegant Theories of How the World Works


John BrockmanSean Carroll - 2013
    Why do we recognize patterns? Is there such a thing as positive stress? Are we genetically programmed to be in conflict with each other? Those are just some of the 150 questions that the world's best scientific minds answer with elegant simplicity.With contributions from Jared Diamond, Richard Dawkins, Nassim Taleb, Brian Eno, Steven Pinker, and more, everything is explained in fun, uncomplicated terms that make the most complex concepts easy to comprehend.

Your Brain Is a Time Machine: The Neuroscience and Physics of Time


Dean Buonomano - 2017
    In this virtuosic work of popular science, neuroscientist and best-selling author Dean Buonomano investigates the intricate relationship between the brain and time: What is time? Why does time seem to speed up or slow down? Is our sense that time flows an illusion? Buonomano presents his own influential theory of how the brain tells time, and he illuminates such concepts as free will, consciousness, spacetime, and relativity from the perspective of a neuroscientist. Drawing on physics, evolutionary biology, and philosophy, Your Brain Is a Time Machine reveals that the brain’s ultimate purpose may be to predict the future, and thus that your brain is a time machine.

The Invention of Science: The Scientific Revolution from 1500 to 1750


David Wootton - 2015
    Yet today, science and its practitioners have come under political attack. In this fascinating history spanning continents and centuries, historian David Wootton offers a lively defense of science, revealing why the Scientific Revolution was truly the greatest event in our history.The Invention of Science goes back five hundred years in time to chronicle this crucial transformation, exploring the factors that led to its birth and the people who made it happen. Wootton argues that the Scientific Revolution was actually five separate yet concurrent events that developed independently, but came to intersect and create a new worldview. Here are the brilliant iconoclasts—Galileo, Copernicus, Brahe, Newton, and many more curious minds from across Europe—whose studies of the natural world challenged centuries of religious orthodoxy and ingrained superstition.From gunpowder technology, the discovery of the new world, movable type printing, perspective painting, and the telescope to the practice of conducting experiments, the laws of nature, and the concept of the fact, Wotton shows how these discoveries codified into a social construct and a system of knowledge. Ultimately, he makes clear the link between scientific discovery and the rise of industrialization—and the birth of the modern world we know.

How I Killed Pluto and Why It Had It Coming


Mike Brown - 2010
    Then, in 2005, astronomer Mike Brown made the discovery of a lifetime: a tenth planet, Eris, slightly bigger than Pluto. But instead of its resulting in one more planet being added to our solar system, Brown’s find ignited a firestorm of controversy that riled the usually sedate world of astronomy and launched him into the public eye. The debate culminated in the demotion of Pluto from real planet to the newly coined category of “dwarf” planet. Suddenly Brown was receiving hate mail from schoolchildren and being bombarded by TV reporters—all because of the discovery he had spent years searching for and a lifetime dreaming about.Filled with both humor and drama, How I Killed Pluto and Why It Had It Coming is Mike Brown’s engaging first-person account of the most tumultuous year in modern astronomy—which he inadvertently caused. As it guides readers through important scientific concepts and inspires us to think more deeply about our place in the cosmos, it is also an entertaining and enlightening personal story: While Brown sought to expand our understanding of the vast nature of space, his own life was changed in the most immediate, human ways by love, birth, and death. A heartfelt and personal perspective on the demotion of everyone’s favorite farflung planet, How I Killed Pluto and Why It Had It Coming is the book for anyone, young or old, who has ever dreamed of exploring the universe—and who among us hasn’t?

The End of Time: The Next Revolution in Our Understanding of the Universe


Julian Barbour - 1999
    Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless `nows'. In The End of Time, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity - which denies the existence of a unique time - and quantum mechanics - which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. The End of Time is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.

A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution


Jennifer A. Doudna - 2017
    Two scientists explore the potential of a revolutionary genetics technology capable of easily and affordably manipulating DNA in human embryos to prevent specific diseases, addressing key concerns about related ethical and societal repercussions.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.

The Ascent of Gravity: The Quest to Understand the Force that Explains Everything


Marcus Chown - 2017
    It was the first force to be recognized and described yet it is the least understood. It is a "force" that keeps your feet on the ground yet no such force actually exists.Gravity, to steal the words of Winston Churchill, is "a riddle, wrapped in a mystery, inside an enigma." And penetrating that enigma promises to answer the biggest questions in science: what is space? What is time? What is the universe? And where did it all come from?Award-winning writer Marcus Chown takes us on an unforgettable journey from the recognition of the "force" of gravity in 1666 to the discovery of gravitational waves in 2015. And, as we stand on the brink of a seismic revolution in our worldview, he brings us up to speed on the greatest challenge ever to confront physics.

Engines of Creation: The Coming Era of Nanotechnology


K. Eric Drexler - 1986
    This brilliant work heralds the new age of nanotechnology, which will give us thorough and inexpensive control of the structure of matter.  Drexler examines the enormous implications of these developments for medicine, the economy, and the environment, and makes astounding yet well-founded projections for the future.