Book picks similar to
Neural Networks Theory by Alexander I. Galushkin


artificial-intelligence
brain
computer-science
dinesh

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Starting Out with Java: From Control Structures Through Objects


Tony Gaddis - 2009
    If you wouldlike to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0132989999/ISBN-13: 9780132989992. That packageincludes ISBN-10: 0132855836/ISBN-13: 9780132855839 and ISBN-10: 0132891557/ISBN-13: 9780132891554. MyProgrammingLab should only be purchased when required by an instructor. In "Starting Out with Java: From Control Structures through Objects", Gaddis covers procedural programming control structures and methods before introducing object-oriented programming. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, and an abundance of exercises appear in every chapter. "

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Artificial Intelligence: A Guide for Thinking Humans


Melanie Mitchell - 2019
    The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it.In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go.Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Decision Trees and Random Forests: A Visual Introduction For Beginners: A Simple Guide to Machine Learning with Decision Trees


Chris Smith - 2017
     They are also used in countless industries such as medicine, manufacturing and finance to help companies make better decisions and reduce risk. Whether coded or scratched out by hand, both algorithms are powerful tools that can make a significant impact. This book is a visual introduction for beginners that unpacks the fundamentals of decision trees and random forests. If you want to dig into the basics with a visual twist plus create your own machine learning algorithms in Python, this book is for you.

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Genes vs Cultures vs Consciousness: A Brief Story of Our Computational Minds


Andres Campero - 2019
    It touches on its evolutionary development, its algorithmic nature and its scientific history by bridging ideas across Neuroscience, Computer Science, Biotechnology, Evolutionary History, Cognitive Science, Political Philosophy, and Artificial Intelligence.Never before had there been nearly as many scientists, resources or productive research focused on these topics, and humanity has achieved some understanding and some clarification. With the speed of progress it is timely to communicate an overreaching perspective, this book puts an emphasis on conveying the essential questions and what we know about their answers in a simple, clear and exciting way.Humans, along with the first RNA molecules, the first life forms, the first brains, the first conscious animals, the first societies and the first artificial agents constitute an amazing and crucial development in a path of increasingly complex computational intelligence. And yet, we occupy a minuscule time period in the history of Earth, a history that has been written by Genes, by Cultures and by Consciousnesses. If we abandon our anthropomorphic bias it becomes obvious that Humans are not so special after all. We are an important but short and transitory step among many others in a bigger story. The story of our computational minds, which is ours but not only ours. What is the relationship between computation, cognition and everything else? What is life and how did it originate? What is the role of culture in human minds? What do we know about the algorithmic nature of the mind, can we engineer it? What is the computational explanation of consciousness? What are some possible future steps in the evolution of minds? The underlying thread is the computational nature of the Mind which results from the mixture of Genes, Cultures and Consciousness. While these three interact in complex ways, they are ultimately computational systems on their own which appeared at different stages of history and which follow their own selective processes operating at different time scales. As technology progresses, the distinction between the three components materializes and will be a key determinant of the future.Among the many topics covered are the origin of life, the concept of computation and its relation to Turing Machines, cultural evolution and the notion of a Selfish Meme, free will and determinism, moral relativity, the hard problem of consciousness, the different theories of concepts from the perspective of cognitive science, the current status of AI and Machine Learning including the symbolic vs sub-symbolic dichotomy, the contrast between logical reasoning and neural networks, and the recent history of Deep Learning, Geoffrey Hinton, DeepMind and its algorithm AlphaGo. It also develops on the history of science and looks into the possible future building on the work of authors like Daniel Dennett, Yuval Harari, Richard Dawkins, Francis Crick, George Church, David Chalmers, Susan Carey, Stanislas Dehaene, Robert Boyd, Joseph Henrich, Daniel Kahneman, Moran Cerf, Josh Tenenbaum, David Deutsch, Steven Pinker, Ray Kurzweil, John von Neumann, Herbert Simon and many more. Andres Campero is a researcher and PhD student at the Brain and Cognitive Sciences Department and at the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (MIT).

Vision: A Computational Investigation into the Human Representation and Processing of Visual Information


David Marr - 1982
    A computational investigation into the human representation and processing of visual information.

Machine Learning in Action


Peter Harrington - 2011
    "Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.

Vehicles: Experiments in Synthetic Psychology


Valentino Braitenberg - 1984
    They are vehicles, a series of hypothetical, self-operating machines that exhibit increasingly intricate if not always successful or civilized behavior. Each of the vehicles in the series incorporates the essential features of all the earlier models and along the way they come to embody aggression, love, logic, manifestations of foresight, concept formation, creative thinking, personality, and free will. In a section of extensive biological notes, Braitenberg locates many elements of his fantasy in current brain research.

The Recursive Mind: The Origins of Human Language, Thought, and Civilization


Michael C. Corballis - 2011
    In this compelling book, Michael Corballis argues that what distinguishes us in the animal kingdom is our capacity for recursion: the ability to embed our thoughts within other thoughts. Evolutionary psychology.Human evolution.Brain -- Evolution.Language and languages -- Origin.

Deep Learning


John D. Kelleher - 2019
    When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.

The Belt: Complete Trilogy


Gerald M. Kilby - 2018
    The ship contains an experimental quantum device, lost while en route to a research colony on Europa. On Earth, powerful corporate forces are moving to resume unrestricted, inter-AI communications, their objective being to gain complete dominion over the colonized solar system. But the outer worlds are mobilizing to prevent them from achieving their objective, a fight back which is being led by Solomon, a sentient quantum intelligence (QI), also on Europa. However, once word of the crew’s discovery gets out, they soon realize that ownership of this technology could fundamentally change the balance of power within the solar system, and they now find themselves at the very nexus of a system-wide conflict. Their fight for survival plays out across the solar system, from the mining outposts of the asteroid belt to the moons of Jupiter and Saturn, and from the great Martian city of Jezero to the irradiated wastelands on Earth. This is an epic tale of humanity’s struggle for survival and meaning in a time when artificial intelligence has finally out-paced our own ability to control it. About The Belt: The story is set a century or so into the future where humanity has colonized most of the inner solar system. The asteroid belt (The Belt) is now a hive of mining activity and ships ply the trade routes to Earth and Mars. The technology depicted, for the most part, is what I consider to be technically plausible, although I do stretch it a little with quantum entanglement. That said, you won’t need a calculator or a slide-rule to enjoy the story.