Book picks similar to
Sparse Distributed Memory by Pentti Kanerva
ai
programming
marblestone
knowrep
Mac OS X Snow Leopard: The Missing Manual
David Pogue - 2009
Fortunately, David Pogue is back, with the humor and expertise that have made this the #1 bestselling Mac book for eight years straight. You get all the answers with jargon-free introductions to:Big-ticket changes. A 64-bit overhaul. Faster everything. A rewritten Finder. Microsoft Exchange compatibility. All-new QuickTime Player. If Apple wrote it, this book covers it.Snow Leopard Spots. This book demystifies the hundreds of smaller enhancements, too, in all 50 programs that come with the Mac: Safari, Mail, iChat, Preview, Time Machine.Shortcuts. This must be the tippiest, trickiest Mac book ever written. Undocumented surprises await on every page.Power usage. Security, networking, build-your-own Services, file sharing with Windows, even Mac OS X's Unix chassis-this one witty, expert guide makes it all crystal clear.
Creation: Life and How to Make It
Steve Grand - 2000
Enormously successful, the game inevitably raises the question: What is artificial life? And in this book--a chance for the devoted fan and the simply curious onlooker to see the world from the perspective of an original philosopher-engineer and intellectual maverick--Steve Grand proposes an answer.From the composition of the brains and bodies of artificial life forms to the philosophical guidelines and computational frameworks that define them, Creation plumbs the practical, social, and ethical aspects and implications of the state of the art. But more than that, the book gives readers access to the insights Grand acquired in writing Creatures--insights that yield a view of the world that is surprisingly antireductionist, antimaterialist, and (to a degree) antimechanistic, a view that sees matter, life, mind, and society as simply different levels of the same thing. Such a hierarchy, Grand suggests, can be mirrored by an equivalent one that exists inside a parallel universe called cyberspace.
Python Programming for Beginners: An Introduction to the Python Computer Language and Computer Programming (Python, Python 3, Python Tutorial)
Jason Cannon - 2014
There can be so much information available that you can't even decide where to start. Or worse, you start down the path of learning and quickly discover too many concepts, commands, and nuances that aren't explained. This kind of experience is frustrating and leaves you with more questions than answers.Python Programming for Beginners doesn't make any assumptions about your background or knowledge of Python or computer programming. You need no prior knowledge to benefit from this book. You will be guided step by step using a logical and systematic approach. As new concepts, commands, or jargon are encountered they are explained in plain language, making it easy for anyone to understand. Here is what you will learn by reading Python Programming for Beginners:
When to use Python 2 and when to use Python 3.
How to install Python on Windows, Mac, and Linux. Screenshots included.
How to prepare your computer for programming in Python.
The various ways to run a Python program on Windows, Mac, and Linux.
Suggested text editors and integrated development environments to use when coding in Python.
How to work with various data types including strings, lists, tuples, dictionaries, booleans, and more.
What variables are and when to use them.
How to perform mathematical operations using Python.
How to capture input from a user.
Ways to control the flow of your programs.
The importance of white space in Python.
How to organize your Python programs -- Learn what goes where.
What modules are, when you should use them, and how to create your own.
How to define and use functions.
Important built-in Python functions that you'll use often.
How to read from and write to files.
The difference between binary and text files.
Various ways of getting help and find Python documentation.
Much more...
Every single code example in the book is available to download, providing you with all the Python code you need at your fingertips! Scroll up, click the Buy Now With 1 Click button and get started learning Python today!
Learning Ruby
Michael J. Fitzgerald - 2007
Written for both experienced and new programmers alike, Learning Ruby is a just-get-in-and-drive book -- a hands-on tutorial that offers lots of Ruby programs and lets you know how and why they work, just enough to get you rolling down the road. Interest in Ruby stems from the popularity of Rails, the web development framework that's attracting new devotees and refugees from Java and PHP. But there are plenty of other uses for this versatile language. The best way to learn is to just try the code! You'll find examples on nearly every page of this book that you can imitate and hack. Briefly, this book:Outlines many of the most important features of Ruby Demonstrates how to use conditionals, and how to manipulate strings in Ruby. Includes a section on regular expressions Describes how to use operators, basic math, functions from the Math module, rational numbers, etc. Talks you through Ruby arrays, and demonstrates hashes in detail Explains how to process files with Ruby Discusses Ruby classes and modules (mixins) in detail, including a brief introduction to object-oriented programming (OOP) Introduces processing XML, the Tk toolkit, RubyGems, reflection, RDoc, embedded Ruby, metaprogramming, exception handling, and other topics Acquaints you with some of the essentials of Rails, and includes a short Rails tutorial. Each chapter concludes with a set of review questions, and appendices provide you with a glossary of terms related to Ruby programming, plus reference material from the book in one convenient location. If you want to take Ruby out for a drive, Learning Ruby holds the keys.
Planning for Big Data
Edd Wilder-James - 2004
From creating new data-driven products through to increasing operational efficiency, big data has the potential to makeyour organization both more competitive and more innovative.As this emerging field transitions from the bleeding edge to enterprise infrastructure, it's vital to understand not only the technologies involved, but the organizational and cultural demands of being data-driven.Written by O'Reilly Radar's experts on big data, this anthology describes:- The broad industry changes heralded by the big data era- What big data is, what it means to your business, and how to start solving data problems- The software that makes up the Hadoop big data stack, and the major enterprise vendors' Hadoop solutions- The landscape of NoSQL databases and their relative merits- How visualization plays an important part in data work
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition
Dan Jurafsky - 2000
This comprehensive work covers both statistical and symbolic approaches to language processing; it shows how they can be applied to important tasks such as speech recognition, spelling and grammar correction, information extraction, search engines, machine translation, and the creation of spoken-language dialog agents. The following distinguishing features make the text both an introduction to the field and an advanced reference guide.- UNIFIED AND COMPREHENSIVE COVERAGE OF THE FIELDCovers the fundamental algorithms of each field, whether proposed for spoken or written language, whether logical or statistical in origin.- EMPHASIS ON WEB AND OTHER PRACTICAL APPLICATIONSGives readers an understanding of how language-related algorithms can be applied to important real-world problems.- EMPHASIS ON SCIENTIFIC EVALUATIONOffers a description of how systems are evaluated with each problem domain.- EMPERICIST/STATISTICAL/MACHINE LEARNING APPROACHES TO LANGUAGE PROCESSINGCovers all the new statistical approaches, while still completely covering the earlier more structured and rule-based methods.
Feature Engineering for Machine Learning
Alice Zheng - 2018
With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.
Computational Thinking
Peter J. Denning - 2019
More recently, "computational thinking" has become part of the K-12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview, tracing a genealogy that begins centuries before digital computers and portraying computational thinking as pioneers of computing have described it.The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as "computers") who performed complex calculations as teams engaged in CT long before electronic computers. The authors identify six dimensions of today's highly developed CT--methods, machines, computing education, software engineering, computational science, and design--and cover each in a chapter. Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
Machine Learning: The Art and Science of Algorithms That Make Sense of Data
Peter Flach - 2012
Peter Flach's clear, example-based approach begins by discussing how a spam filter works, which gives an immediate introduction to machine learning in action, with a minimum of technical fuss. Flach provides case studies of increasing complexity and variety with well-chosen examples and illustrations throughout. He covers a wide range of logical, geometric and statistical models and state-of-the-art topics such as matrix factorisation and ROC analysis. Particular attention is paid to the central role played by features. The use of established terminology is balanced with the introduction of new and useful concepts, and summaries of relevant background material are provided with pointers for revision if necessary. These features ensure Machine Learning will set a new standard as an introductory textbook.
Training Guide: Programming in HTML5 with JavaScript and CSS3
Glenn Johnson - 2013
Build hands-on expertise through a series of lessons, exercises, and suggested practices—and help maximize your performance on the job.Provides in-depth, hands-on training you take at your own pace Focuses on job-role-specific expertise for using HTML5, JavaScript, and CSS3 to begin building modern web and Windows 8 apps Features pragmatic lessons, exercises, and practices Creates a foundation of skills which, along with on-the-job experience, can be measured by Microsoft Certification exams such as 70-480 Coverage includes: creating HTML5 documents; implementing styles with CSS3; JavaScript in depth; using Microsoft developer tools; AJAX; multimedia support; drawing with Canvas and SVG; drag and drop functionality; location-aware apps; web storage; offline apps; writing your first simple Windows 8 apps; and other key topics
Composing Software
Eric Elliott - 2018
Most developers have a limited understanding of compositional techniques. It's time for that to change.In "Composing Software", Eric Elliott shares the fundamentals of composition, including both function composition and object composition, and explores them in the context of JavaScript. The book covers the foundations of both functional programming and object oriented programming to help the reader better understand how to build and structure complex applications using simple building blocks.You'll learn: • Functional programming • Object composition • How to work with composite data structures • Closures • Higher order functions • Functors (e.g., array.map) • Monads (e.g., promises) • Transducers • LensesAll of this in the context of JavaScript, the most used programming language in the world. But the learning doesn't stop at JavaScript. You'll be able to apply these lessons to any language. This book is about the timeless principles of software composition and its lessons will outlast the hot languages and frameworks of today. Unlike most programming books, this one may still be relevant 20 years from now.This book began life as a popular blog post series that attracted hundreds of thousands of readers and influenced the way software is built at many high growth tech startups and fortune 500 companies.
If Then: How the Simulmatics Corporation Invented the Future
Jill Lepore - 2020
Jill Lepore, best-selling author of These Truths, came across the company’s papers in MIT’s archives and set out to tell this forgotten history, the long-lost backstory to the methods, and the arrogance, of Silicon Valley.Founded in 1959 by some of the nation’s leading social scientists—“the best and the brightest, fatally brilliant, Icaruses with wings of feathers and wax, flying to the sun”—Simulmatics proposed to predict and manipulate the future by way of the computer simulation of human behavior. In summers, with their wives and children in tow, the company’s scientists met on the beach in Long Island under a geodesic, honeycombed dome, where they built a “People Machine” that aimed to model everything from buying a dishwasher to counterinsurgency to casting a vote. Deploying their “People Machine” from New York, Washington, Cambridge, and even Saigon, Simulmatics’ clients included the John F. Kennedy presidential campaign, the New York Times, the Department of Defense, and dozens of major manufacturers: Simulmatics had a hand in everything from political races to the Vietnam War to the Johnson administration’s ill-fated attempt to predict race riots. The company’s collapse was almost as rapid as its ascent, a collapse that involved failed marriages, a suspicious death, and bankruptcy. Exposed for false claims, and even accused of war crimes, it closed its doors in 1970 and all but vanished. Until Lepore came across the records of its remains.The scientists of Simulmatics believed they had invented “the A-bomb of the social sciences.” They did not predict that it would take decades to detonate, like a long-buried grenade. But, in the early years of the twenty-first century, that bomb did detonate, creating a world in which corporations collect data and model behavior and target messages about the most ordinary of decisions, leaving people all over the world, long before the global pandemic, crushed by feelings of helplessness. This history has a past; If Then is its cautionary tale.
Testable JavaScript
Mark Ethan Trostler - 2012
This book shows you what writing and maintaining testable JavaScript for the client- or server-side actually entails, whether you’re creating a new application or rewriting legacy code.From methods to reduce code complexity to unit testing, code coverage, debugging, and automation, you’ll learn a holistic approach for writing JavaScript code that you and your colleagues can easily fix and maintain going forward. Testing JavaScript code is complicated. This book helps you simply the process considerably.Get an overview of Agile, test-driven development, and behavior-driven developmentUse patterns from static languages and standards-based JavaScript to reduce code complexityLearn the advantages of event-based architectures, including modularity, loose coupling, and reusabilityExplore tools for writing and running unit tests at the functional and application levelGenerate code coverage to measure the scope and effectiveness of your testsConduct integration, performance, and load testing, using Selenium or CasperJSUse tools for in-browser, Node.js, mobile, and production debuggingUnderstand what, when, and how to automate your development processes
The Art of Statistics: How to Learn from Data
David Spiegelhalter - 2019
Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.
Building Cloud Apps with Microsoft Azure: Best Practices for DevOps, Data Storage, High Availability, and More (Developer Reference)
Scott Guthrie - 2014
The patterns apply to the development process as well as to architecture and coding practices. The content is based on a presentation developed by Scott Guthrie and delivered by him at the Norwegian Developers Conference (NDC) in June of 2013 (part 1, part 2), and at Microsoft Tech Ed Australia in September 2013 (part 1, part 2). Many others updated and augmented the content while transitioning it from video to written form. Who should read this book Developers who are curious about developing for the cloud, are considering a move to the cloud, or are new to cloud development will find here a concise overview of the most important concepts and practices they need to know. The concepts are illustrated with concrete examples, and each chapter includes links to other resources that provide more in-depth information. The examples and the links to additional resources are for Microsoft frameworks and services, but the principles illustrated apply to other web development frameworks and cloud environments as well. Developers who are already developing for the cloud may find ideas here that will help make them more successful. Each chapter in the series can be read independently, so you can pick and choose topics that you're interested in. Anyone who watched Scott Guthrie's "Building Real World Cloud Apps with Windows Azure" presentation and wants more details and updated information will find that here. Assumptions This ebook expects that you have experience developing web applications by using Visual Studio and ASP.NET. Familiarity with C# would be helpful in places.