Book picks similar to
Julia for Data Science by Zacharias Voulgaris
have
machine-learning
programming-collection
research-a-bit-more
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Human Compatible: Artificial Intelligence and the Problem of Control
Stuart Russell - 2019
Conflict between humans and machines is seen as inevitable and its outcome all too predictable.In this groundbreaking book, distinguished AI researcher Stuart Russell argues that this scenario can be avoided, but only if we rethink AI from the ground up. Russell begins by exploring the idea of intelligence in humans and in machines. He describes the near-term benefits we can expect, from intelligent personal assistants to vastly accelerated scientific research, and outlines the AI breakthroughs that still have to happen before we reach superhuman AI. He also spells out the ways humans are already finding to misuse AI, from lethal autonomous weapons to viral sabotage.If the predicted breakthroughs occur and superhuman AI emerges, we will have created entities far more powerful than ourselves. How can we ensure they never, ever, have power over us? Russell suggests that we can rebuild AI on a new foundation, according to which machines are designed to be inherently uncertain about the human preferences they are required to satisfy. Such machines would be humble, altruistic, and committed to pursue our objectives, not theirs. This new foundation would allow us to create machines that are provably deferential and provably beneficial.In a 2014 editorial co-authored with Stephen Hawking, Russell wrote, "Success in creating AI would be the biggest event in human history. Unfortunately, it might also be the last." Solving the problem of control over AI is not just possible; it is the key that unlocks a future of unlimited promise.
Hands-On Programming with R: Write Your Own Functions and Simulations
Garrett Grolemund - 2014
With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them
A Huntsman's Fate: A Sword And Sorcery Bundle
Liam Reese - 2018
Limited -time price of 99c – regular $6.99. Orphaned by an assassin’s blade, Besmir spends his youth on the fringes of society. He grows into a hunstman of some note, suitable to put food on the Duke’s table, if unfit to join the meal. His simple, meager life is thrown into chaos when he finds himself approached by Zaynorth, an illusion mage who has come in search of Besmir, bearing a remarkable truth: the huntsman is far more than he knows himself to be. A Hunstsman’s Fate is an epic fantasy saga of breathtaking scope, following the rise of a man of humble beginnings across time as he shapes not only his own destiny, but the fates of kingdoms, worlds, and even the gods themselves. Includes the first three standalone novels of the series: Heart of a Huntsman, Duel with a Demoness, and The Ire of Eloran.
R in a Nutshell: A Desktop Quick Reference
Joseph Adler - 2009
R in a Nutshell provides a quick and practical way to learn this increasingly popular open source language and environment. You'll not only learn how to program in R, but also how to find the right user-contributed R packages for statistical modeling, visualization, and bioinformatics.The author introduces you to the R environment, including the R graphical user interface and console, and takes you through the fundamentals of the object-oriented R language. Then, through a variety of practical examples from medicine, business, and sports, you'll learn how you can use this remarkable tool to solve your own data analysis problems.Understand the basics of the language, including the nature of R objectsLearn how to write R functions and build your own packagesWork with data through visualization, statistical analysis, and other methodsExplore the wealth of packages contributed by the R communityBecome familiar with the lattice graphics package for high-level data visualizationLearn about bioinformatics packages provided by Bioconductor"I am excited about this book. R in a Nutshell is a great introduction to R, as well as a comprehensive reference for using R in data analytics and visualization. Adler provides 'real world' examples, practical advice, and scripts, making it accessible to anyone working with data, not just professional statisticians."
Beginning Web Programming with HTML, XHTML and CSS
Jon Duckett - 2004
It follows standards-based principles, but also teaches readers ways around problems they are likely to face using (X)HTML.While XHTML is the "current" standard, the book still covers HTML because many people do not yet understand that XHTML is the official successor to HTML, and many readers will still stick with HTML for backward compatibility and simpler/informal Web pages that don't require XHTML compliance.The book teaches basic principles of usability and accessibility along the way, to get users into the mode of developing Web pages that will be available to as many viewers as possible from the start. The book also covers the most commonly used programming/scripting language -- JavaScript -- and provides readers with a roadmap of other Web technologies to learn after mastering this book to add more functionality to their sites.
The Model Thinker: What You Need to Know to Make Data Work for You
Scott E. Page - 2018
But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Web Development with Clojure: Build Bulletproof Web Apps with Less Code
Dmitri Sotnikov - 2013
Web Development With Clojure shows you how to apply Clojure programming fundamentals to build real-world solutions. You'll develop all the pieces of a full web application in this powerful language. If you already have some familiarity with Clojure, you'll learn how to put it to serious practical use. If you're new to the language, the book provides just enough Clojure to get down to business.You'll learn the full process of web development using Clojure while getting hands-on experience with current tools, libraries, and best practices in the language. You'll develop Clojure apps with both the Light Table and Eclipse development environments. Rather than frameworks, Clojure development builds on rich libraries. You'll acquire expertise in the popular Ring/Compojure stack, and you'll learn to use the Liberator library to quickly develop RESTful services. Plus, you'll find out how to use ClojureScript to work in one language on the client and server sides.Throughout the book, you'll develop key components of web applications, including multiple approaches to database access. You'll create a simple guestbook app and an app to serve resources to users. By the end, you will have developed a rich Picture Gallery web application from conception to packaging and deployment.This book is for anyone interested in taking the next step in web development.Q&A with Dmitri SotnikovWhy did you write Web Development with Clojure?When I started using Clojure, I found that it took a lot of work to find all the pieces needed to put together a working application. There was very little documentation available on how to organize the code, what libraries to use, or how to package the application for deployment. Having gone through the process of figuring out what works, I thought that it would be nice to make it easier for others to get started.What are the advantages of using a functional language?Over the course of my career, I have developed a great appreciation for functional programming. I find that it addresses a number of shortcomings present in the imperative paradigm. For example, in a functional language any changes to the data are created via revisions to the existing data. So they only exist in the local scope. This fact allows us to safely reason about individual parts of the program in isolation, which is critical for writing and supporting large applications.Why use Clojure specifically?Clojure is a simple and pragmatic language that is designed for real-world usage. It combines the productivity of a high-level language with the excellent performance seen in languages like C# or Java. It's also very easy to learn because it allows you to use a small number of concepts to solve a large variety of problems.If I already have a preferred web development platform, what might I get out of this book?If you're using an imperative language, you'll get to see a very different approach to writing code. Even if you're not going to use Clojure as your primary language, the concepts you'll learn will provide you with new ways to approach problems.Is the material in the book accessible to somebody who is not familiar with Clojure?Absolutely. The book targets developers who are already familiar with the basics of web development and are interested in learning Clojure in this context. The book introduces just enough of the language to get you productive and allows you to learn by example.
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
OS X 10.10 Yosemite: The Ars Technica Review
John Siracusa - 2014
Siracusa's overview, wrap-up, and critique of everything new in OS X 10.10 Yosemite.
Machine Learning: A Visual Starter Course For Beginner's
Oliver Theobald - 2017
If you have ever found yourself lost halfway through other introductory materials on this topic, this is the book for you. If you don't understand set terminology such as vectors, hyperplanes, and centroids, then this is also the book for you. This starter course isn't a picture story book but does include many visual examples that break algorithms down into a digestible and practical format. As a starter course, this book connects the dots and offers the crash course I wish I had when I first started. The kind of guide I wish had before I started taking on introductory courses that presume you’re two days away from an advanced mathematics exam. That’s why this introductory course doesn’t go further on the subject than other introductory books, but rather, goes a step back. A half-step back in order to help everyone make his or her first strides in machine learning and is an ideal study companion for the visual learner. In this step-by-step guide you will learn: - How to download free datasets - What tools and software packages you need - Data scrubbing techniques, including one-hot encoding, binning and dealing with missing data - Preparing data for analysis, including k-fold Validation - Regression analysis to create trend lines - Clustering, including k-means and k-nearest Neighbors - Naive Bayes Classifier to predict new classes - Anomaly detection and SVM algorithms to combat anomalies and outliers - The basics of Neural Networks - Bias/Variance to improve your machine learning model - Decision Trees to decode classification
Please feel welcome to join this starter course by buying a copy, or sending a free sample to your preferred device.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.