Book picks similar to
Hacking Secret Ciphers with Python by Al Sweigart
programming
python
computers
reference
Security Metrics: Replacing Fear, Uncertainty, and Doubt
Andrew Jaquith - 2007
Using sample charts, graphics, case studies, and war stories, Yankee Group Security Expert Andrew Jaquith demonstrates exactly how to establish effective metrics based on your organization's unique requirements. You'll discover how to quantify hard-to-measure security activities, compile and analyze all relevant data, identify strengths and weaknesses, set cost-effective priorities for improvement, and craft compelling messages for senior management. Security Metrics successfully bridges management's quantitative viewpoint with the nuts-and-bolts approach typically taken by security professionals. It brings together expert solutions drawn from Jaquith's extensive consulting work in the software, aerospace, and financial services industries, including new metrics presented nowhere else. You'll learn how to: - Replace nonstop crisis response with a systematic approach to security improvement - Understand the differences between "good" and "bad" metrics - Measure coverage and control, vulnerability management, password quality, patch latency, benchmark scoring, and business-adjusted risk - Quantify the effectiveness of security acquisition, implementation, and other program activities - Organize, aggregate, and analyze your data to bring out key insights - Use visualization to understand and communicate security issues more clearly - Capture valuable data from firewalls and antivirus logs, third-party auditor reports, and other resources - Implement balanced scorecards that present compact, holistic views of organizational security effectiveness Whether you're an engineer or consultant responsible for security and reporting to management-or an executive who needs better information for decision-making-Security Metrics is the resource you have been searching for. Andrew Jaquith, program manager for Yankee Group's Security Solutions and Services Decision Service, advises enterprise clients on prioritizing and managing security resources. He also helps security vendors develop product, service, and go-to-market strategies for reaching enterprise customers. He co-founded @stake, Inc., a security consulting pioneer acquired by Symantec Corporation in 2004. His application security and metrics research has been featured in CIO, CSO, InformationWeek, IEEE Security and Privacy, and The Economist. Foreword Preface Acknowledgments About the Author Chapter 1 Introduction: Escaping the Hamster Wheel of Pain Chapter 2 Defining Security Metrics Chapter 3 Diagnosing Problems and Measuring Technical Security Chapter 4 Measuring Program Effectiveness Chapter 5 Analysis Techniques Chapter 6 Visualization Chapter 7 Automating Metrics Calculations Chapter 8 Designing Security Scorecards Index
The Docker Book: Containerization is the new virtualization
James Turnbull - 2014
In this book, we'll will walk you through installing, deploying, managing, and extending Docker. We're going to do that by first introducing you to the basics of Docker and its components. Then we'll start to use Docker to build containers and services to perform a variety of tasks. We're going to take you through the development life cycle, from testing to production, and see where Docker fits in and how it can make your life easier. We'll make use of Docker to build test environments for new projects, demonstrate how to integrate Docker with continuous integration workflow, and then how to build application services and platforms. Finally, we'll show you how to use Docker's API and how to extend Docker yourself. We'll teach you how to: * Install Docker. * Take your first steps with a Docker container. * Build Docker images. * Manage and share Docker images. * Run and manage more complex Docker containers. * Deploy Docker containers as part of your testing pipeline. * Build multi-container applications and environments. * Explore the Docker API. * Getting Help and Extending Docker.
Python: Programming: Your Step By Step Guide To Easily Learn Python in 7 Days (Python for Beginners, Python Programming for Beginners, Learn Python, Python Language)
iCode Academy - 2017
Are You Ready To Learn Python Easily? Learning Python Programming in 7 days is possible, although it might not look like it
The Principles of Beautiful Web Design
Jason Beaird - 2007
A simple, easy-to-follow guide, illustrated with plenty of full-color examples, this book will lead you through the process of creating great designs from start to finish. Good design principles are not rocket science, and using the information contained in this book will help you create stunning web sites.Understand the design process, from discovery to implementation Understand what makes "good design" Developing pleasing layouts using grids, the rule of thirds, balance and symmetry Use color effectively, develop color schemes and create a palette Use textures, lines, points, shapes, volumes and depth Learn how good typography can make ordinary designs look great Effective imagery: choosing, editing and placing images And much more Throughout the book, you'll follow an example design, from concept to completion, learning along the way. The book's full-color layout and large format (8" x 10") make The Principles Of Beautiful Wed Design a pleasure to read.Editorial Reviews"The Principles of Beautiful Web Design is a good book to kick start your graphic-design journey. The biggest benefit that I got from this book is the knowledge to learn from great designs as opposed to just admiring them in a state of awe." - Slashdot.org"Jason is a great writer, and the book is quite easy to read. It's put together wonderfully, including many full color screenshots and other forms of imagery that make the book a pleasure to read. I'd definitely recommend the book to anyone in Web design." - MondayByNoon"Jason Beaird covers web design in a way that non-designers can understand. He walks you through all of the aspects of design development from initial meeting to finished product. If you are just getting into web development, this is a must read." - Blogcritics.org"This is a thoroughly practical guide to web design that is very well written: good technical depth in easy-to-understand language with excellent illustrations and graphics that support the text. For many users it will be the only web-design text they will need. For those who want to further advance their skills and knowledge it will provide a sound foundation." - PC Update"His "Don't just tell, show!" style makes this book accessible to everyone... It strikes a carefully thought-out balance between describing principles and illustrating them. It is clear and well structured, with practical examples in every chapter." - Mitch Wheat
Algorithms to Live By: The Computer Science of Human Decisions
Brian Christian - 2016
What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
The Nature of Code
Daniel Shiffman - 2012
Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.
Doing Data Science
Cathy O'Neil - 2013
But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Eloquent Ruby
Russ Olsen - 2011
In
Eloquent Ruby,
Russ Olsen helps you write Ruby like true Rubyists do-so you can leverage its immense, surprising power. Olsen draws on years of experience internalizing the Ruby culture and teaching Ruby to other programmers. He guides you to the "Ah Ha!" moments when it suddenly becomes clear why Ruby works the way it does, and how you can take advantage of this language's elegance and expressiveness.
Eloquent Ruby
starts small, answering tactical questions focused on a single statement, method, test, or bug. You'll learn how to write code that actually looks like Ruby (not Java or C#); why Ruby has so many control structures; how to use strings, expressions, and symbols; and what dynamic typing is really good for. Next, the book addresses bigger questions related to building methods and classes. You'll discover why Ruby classes contain so many tiny methods, when to use operator overloading, and when to avoid it. Olsen explains how to write Ruby code that writes its own code-and why you'll want to. He concludes with powerful project-level features and techniques ranging from gems to Domain Specific Languages. A part of the renowned Addison-Wesley Professional Ruby Series,
Eloquent Ruby
will help you "put on your Ruby-colored glasses" and get results that make you a true believer.
Types and Programming Languages
Benjamin C. Pierce - 2002
The study of type systems--and of programming languages from a type-theoretic perspective--has important applications in software engineering, language design, high-performance compilers, and security.This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material.The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.
Seven Concurrency Models in Seven Weeks: When Threads Unravel
Paul Butcher - 2014
Concurrency and parallelism are the keys, and Seven Concurrency Models in Seven Weeks equips you for this new world. See how emerging technologies such as actors and functional programming address issues with traditional threads and locks development. Learn how to exploit the parallelism in your computer's GPU and leverage clusters of machines with MapReduce and Stream Processing. And do it all with the confidence that comes from using tools that help you write crystal clear, high-quality code. This book will show you how to exploit different parallel architectures to improve your code's performance, scalability, and resilience. Learn about the perils of traditional threads and locks programming and how to overcome them through careful design and by working with the standard library. See how actors enable software running on geographically distributed computers to collaborate, handle failure, and create systems that stay up 24/7/365. Understand why shared mutable state is the enemy of robust concurrent code, and see how functional programming together with technologies such as Software Transactional Memory (STM) and automatic parallelism help you tame it. You'll learn about the untapped potential within every GPU and how GPGPU software can unleash it. You'll see how to use MapReduce to harness massive clusters to solve previously intractible problems, and how, in concert with Stream Processing, big data can be tamed. With an understanding of the strengths and weaknesses of each of the different models and hardware architectures, you'll be empowered to tackle any problem with confidence.What You Need: The example code can be compiled and executed on *nix, OS X, or Windows. Instructions on how to download the supporting build systems are given in each chapter.
Getting Started with SQL: A Hands-On Approach for Beginners
Thomas Nield - 2016
If you're a business or IT professional, this short hands-on guide teaches you how to pull and transform data with SQL in significant ways. You will quickly master the fundamentals of SQL and learn how to create your own databases.Author Thomas Nield provides exercises throughout the book to help you practice your newfound SQL skills at home, without having to use a database server environment. Not only will you learn how to use key SQL statements to find and manipulate your data, but you'll also discover how to efficiently design and manage databases to meet your needs.You'll also learn how to:Explore relational databases, including lightweight and centralized modelsUse SQLite and SQLiteStudio to create lightweight databases in minutesQuery and transform data in meaningful ways by using SELECT, WHERE, GROUP BY, and ORDER BYJoin tables to get a more complete view of your business dataBuild your own tables and centralized databases by using normalized design principlesManage data by learning how to INSERT, DELETE, and UPDATE records
The New Hacker's Dictionary
Eric S. Raymond - 1991
Historically and etymologically richer than its predecessor, it supplies additional background on existing entries and clarifies the murky origins of several important jargon terms (overturning a few long-standing folk etymologies) while still retaining its high giggle value.Sample definitionhacker n. [originally, someone who makes furniture with an axe] 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary. 2. One who programs enthusiastically (even obsessively) or who enjoys programming rather than just theorizing about programming. 3. A person capable of appreciating {hack value}. 4. A person who is good at programming quickly. 5. An expert at a particular program, or one who frequently does work using it or on it; as in `a UNIX hacker'. (Definitions 1 through 5 are correlated, and people who fit them congregate.) 6. An expert or enthusiast of any kind. One might be an astronomy hacker, for example. 7. One who enjoys the intellectual challenge of creatively overcoming or circumventing limitations. 8. [deprecated] A malicious meddler who tries to discover sensitive information by poking around. Hence `password hacker', `network hacker'. The correct term is {cracker}.The term 'hacker' also tends to connote membership in the global community defined by the net (see {network, the} and {Internet address}). It also implies that the person described is seen to subscribe to some version of the hacker ethic (see {hacker ethic, the}).It is better to be described as a hacker by others than to describe oneself that way. Hackers consider themselves something of an elite (a meritocracy based on ability), though one to which new members are gladly welcome. There is thus a certain ego satisfaction to be had in identifying yourself as a hacker (but if you claim to be one and are not, you'll quickly be labeled {bogus}). See also {wannabee}.
Programming Groovy
Venkat Subramaniam - 2008
But recently, the industry has turned to dynamic languages for increased productivity and speed to market.Groovy is one of a new breed of dynamic languages that run on the Java platform. You can use these new languages on the JVM and intermix them with your existing Java code. You can leverage your Java investments while benefiting from advanced features including true Closures, Meta Programming, the ability to create internal DSLs, and a higher level of abstraction.If you're an experienced Java developer, Programming Groovy will help you learn the necessary fundamentals of programming in Groovy. You'll see how to use Groovy to do advanced programming including using Meta Programming, Builders, Unit Testing with Mock objects, processing XML, working with Databases and creating your own Domain-Specific Languages (DSLs).
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data