Book picks similar to
Algorithmic Puzzles by Anany V. Levitin
computer-science
puzzles
mathematics
cs
Fundamentals of Database Systems
Ramez Elmasri - 1989
It features excellent examples and access to Addison Wesley's database Web site that includes further teaching, tutorials and many useful student resources.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Core Python Programming
Wesley J. Chun - 2000
It turns out that all the buzz is well earned. I think this is the best book currently available for learning Python. I would recommend Chun's book over Learning Python (O'Reilly), Programming Python (O'Reilly), or The Quick Python Book (Manning)." --David Mertz, Ph.D., IBM DeveloperWorks(R) "I have been doing a lot of research [on] Python for the past year and have seen a number of positive reviews of your book. The sentiment expressed confirms the opinion that Core Python Programming is now considered the standard introductory text." --Richard Ozaki, Lockheed Martin "Finally, a book good enough to be both a textbook and a reference on the Python language now exists." --Michael Baxter, Linux Journal "Very well written. It is the clearest, friendliest book I have come across yet for explaining Python, and putting it in a wider context. It does not presume a large amount of other experience. It does go into some important Python topics carefully and in depth. Unlike too many beginner books, it never condescends or tortures the reader with childish hide-and-seek prose games. [It] sticks to gaining a solid grasp of Python syntax and structure." --http: //python.org bookstore Web site "[If ] I could only own one Python book, it would be Core Python Programming by Wesley Chun. This book manages to cover more topics in more depth than Learning Python but includes it all in one book that also more than adequately covers the core language. [If] you are in the market for just one book about Python, I recommend this book. You will enjoy reading it, including its wry programmer's wit. More importantly, you will learn Python. Even more importantly, you will find it invaluable in helping you in your day-to-day Python programming life. Well done, Mr. Chun!" --Ron Stephens, Python Learning Foundation "I think the best language for beginners is Python, without a doubt. My favorite book is Core Python Programming." --s003apr, MP3Car.com Forums "Personally, I really like Python. It's simple to learn, completely intuitive, amazingly flexible, and pretty darned fast. Python has only just started to claim mindshare in the Windows world, but look for it to start gaining lots of support as people discover it. To learn Python, I'd start with Core Python Programming by Wesley Chun." --Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online "If you learn well from books, I suggest Core Python Programming. It is by far the best I've found. I'm a Python newbie as well and in three months time I've been able to implement Python in projects at work (automating MSOffice, SQL DB stuff, etc.)." --ptonman, Dev Shed Forums "Python is simply a beautiful language. It's easy to learn, it's cross-platform, and it works. It has achieved many of the technical goals that Java strives for. A one-sentence description of Python would be: 'All other languages appear to have evolved over time--but Python was designed.' And it was designed well. Unfortunately, there aren't a large number of books for Python. The best one I've run across so far is Core Python Programming." --Chris Timmons, C. R. Timmons Consulting "If you like the Prentice Hall Core series, another good full-blown treatment to consider would be Core Python Programming. It addresses in elaborate concrete detail many practical topics that get little, if any, coverage in other books." --Mitchell L Model, MLM Consulting "Core Python Programming is an amazingly easy read! The liberal use of examples helps clarify some of the more subtle points of the language. And the comparisons to languages with which I'm already familiar (C/C++/Java) get you programming in record speed." --Michael Santos, Ph.D., Green Hills Software The Complete Developer's Guide to Python New to Python? The definitive guide to Python development for experienced programmersCovers core language features thoroughly, including those found in the latest Python releases--learn more than just the syntax!Learn advanced topics such as regular expressions, networking, multithreading, GUI, Web/CGI, and Python extensionsIncludes brand-new material on databases, Internet clients, Java/Jython, and Microsoft Office, plus Python 2.6 and 3Presents hundreds of code snippets, interactive examples, and practical exercises to strengthen your Python skills Python is an agile, robust, expressive, fully object-oriented, extensible, and scalable programming language. It combines the power of compiled languages with the simplicity and rapid development of scripting languages. In Core Python Programming, Second Edition , leading Python developer and trainer Wesley Chun helps you learn Python quickly and comprehensively so that you can immediately succeed with any Python project. Using practical code examples, Chun introduces all the fundamentals of Python programming: syntax, objects and memory management, data types, operators, files and I/O, functions, generators, error handling and exceptions, loops, iterators, functional programming, object-oriented programming and more. After you learn the core fundamentals of Python, he shows you what you can do with your new skills, delving into advanced topics, such as regular expressions, networking programming with sockets, multithreading, GUI development, Web/CGI programming and extending Python in C. This edition reflects major enhancements in the Python 2.x series, including 2.6 and tips for migrating to 3. It contains new chapters on database and Internet client programming, plus coverage of many new topics, including new-style classes, Java and Jython, Microsoft Office (Win32 COM Client) programming, and much more. Learn professional Python style, best practices, and good programming habitsGain a deep understanding of Python's objects and memory model as well as its OOP features, including those found in Python's new-style classesBuild more effective Web, CGI, Internet, and network and other client/server applicationsLearn how to develop your own GUI applications using Tkinter and other toolkits available for PythonImprove the performance of your Python applications by writing extensions in C and other languages, or enhance I/O-bound applications by using multithreadingLearn about Python's database API and how to use a variety of database systems with Python, including MySQL, Postgres, and SQLiteFeatures appendices on Python 2.6 & 3, including tips on migrating to the next generation! Core Python Programming delivers Systematic, expert coverage of Python's core featuresPowerful insights for developing complex applicationsEasy-to-use tables and charts detailing Python modules, operators, functions, and methodsDozens of professional-quality code examples, from quick snippets to full-fledged applications
The Fourth Paradigm: Data-Intensive Scientific Discovery
Tony Hey - 2009
Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets. The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud-computing technologies. This collection of essays expands on the vision of pioneering computer scientist Jim Gray for a new, fourth paradigm of discovery based on data-intensive science and offers insights into how it can be fully realized.
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition
Dan Jurafsky - 2000
This comprehensive work covers both statistical and symbolic approaches to language processing; it shows how they can be applied to important tasks such as speech recognition, spelling and grammar correction, information extraction, search engines, machine translation, and the creation of spoken-language dialog agents. The following distinguishing features make the text both an introduction to the field and an advanced reference guide.- UNIFIED AND COMPREHENSIVE COVERAGE OF THE FIELDCovers the fundamental algorithms of each field, whether proposed for spoken or written language, whether logical or statistical in origin.- EMPHASIS ON WEB AND OTHER PRACTICAL APPLICATIONSGives readers an understanding of how language-related algorithms can be applied to important real-world problems.- EMPHASIS ON SCIENTIFIC EVALUATIONOffers a description of how systems are evaluated with each problem domain.- EMPERICIST/STATISTICAL/MACHINE LEARNING APPROACHES TO LANGUAGE PROCESSINGCovers all the new statistical approaches, while still completely covering the earlier more structured and rule-based methods.
Letters to a Young Mathematician
Ian Stewart - 2006
Subjects ranging from the philosophical to the practical--what mathematics is and why it's worth doing, the relationship between logic and proof, the role of beauty in mathematical thinking, the future of mathematics, how to deal with the peculiarities of the mathematical community, and many others--are dealt with in Stewart's much-admired style, which combines subtle, easygoing humor with a talent for cutting to the heart of the matter. In the tradition of G.H. Hardy's classic A Mathematician's Apology, this book is sure to be a perennial favorite with students at all levels, as well as with other readers who are curious about the frequently incomprehensible world of mathematics.
Networking for Systems Administrators (IT Mastery Book 5)
Michael W. Lucas - 2015
Servers give sysadmins a incredible visibility into the network—once they know how to unlock it. Most sysadmins don’t need to understand window scaling, or the differences between IPv4 and IPv6 echo requests, or other intricacies of the TCP/IP protocols. You need only enough to deploy your own applications and get easy support from the network team.This book teaches you:•How modern networks really work•The essentials of TCP/IP•The next-generation protocol, IPv6•The right tools to diagnose network problems, and how to use them•Troubleshooting everything from the physical wire to DNS•How to see the traffic you send and receive•Connectivity testing•How to communicate with your network team to quickly resolve problemsA systems administrator doesn’t need to know the innards of TCP/IP, but knowing enough to diagnose your own network issues transforms a good sysadmin into a great one.
Working Effectively with Legacy Code
Michael C. Feathers - 2004
This book draws on material Michael created for his renowned Object Mentor seminars, techniques Michael has used in mentoring to help hundreds of developers, technical managers, and testers bring their legacy systems under control. The topics covered include: Understanding the mechanics of software change, adding features, fixing bugs, improving design, optimizing performance Getting legacy code into a test harness Writing tests that protect you against introducing new problems Techniques that can be used with any language or platform, with examples in Java, C++, C, and C# Accurately identifying where code changes need to be made Coping with legacy systems that aren't object-oriented Handling applications that don't seem to have any structureThis book also includes a catalog of twenty-four dependency-breaking techniques that help you work with program elements in isolation and make safer changes.
Elements of Information Theory
Thomas M. Cover - 1991
Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Computational Thinking
Peter J. Denning - 2019
More recently, "computational thinking" has become part of the K-12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview, tracing a genealogy that begins centuries before digital computers and portraying computational thinking as pioneers of computing have described it.The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as "computers") who performed complex calculations as teams engaged in CT long before electronic computers. The authors identify six dimensions of today's highly developed CT--methods, machines, computing education, software engineering, computational science, and design--and cover each in a chapter. Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
Mastering Algorithms with C
Kyle Loudon - 1999
Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms
Dive Into Python
Mark Pilgrim - 2004
because the language seems like a good way to accomplish programming tasks that don't require the low-level bit handling power of C.-- Richard Bejtlich, TaoSecurityPython is a new and innovative scripting language. It is set to replace Perl as the programming language of choice for shell scripters, and for serious application developers who want a feature-rich, yet simple language to deploy their products.Dive Into Python is a hands-on guide to the Python language. Each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end.This is the perfect resource for you if you like to jump into languages fast and get going right away. If you're just starting to learn Python, first pick up a copy of Magnus Lie Hetland's Practical Python.
Hacking: The Art of Exploitation
Jon Erickson - 2003
This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.
Kotlin in Action
Dmitry Jemerov - 2016
It offers on expressiveness and safety without compromising simplicity, seamless interoperability with existing Java code, and great tooling support. Because Kotlin generates regular Java bytecode and works together with existing Java libraries and frameworks, it can be used almost everywhere where Java is used today - for server-side development, Android apps, and much more.Kotlin in Action takes experienced Java developers from the language basics all the way through building applications to run on the JVM and Android devices. Written by core developers of Kotlin, this example-rich book begins by teaching you the basic syntax of the Kotlin language. Then you’ll learn how to use features that let you build reusable abstractions, higher-level functions, libraries, and even entire domain specific languages. Finally, you’ll focus on details of applying Kotlin in real-world projects, such as build system integration, Android support and concurrent programming.
Learning Spark: Lightning-Fast Big Data Analysis
Holden Karau - 2013
How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates.
Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.
Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell
Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib
Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm
Learn how to deploy interactive, batch, and streaming applications
Connect to data sources including HDFS, Hive, JSON, and S3
Master advanced topics like data partitioning and shared variables