Computer Graphics with OpenGL


Donald Hearn - 2003
    The text converts all programming code into the C++ language.

Absolute Beginner's Guide to C


Greg Perry - 1993
    This bestseller talks to readers at their level, explaining every aspect of how to get started and learn the C language quickly. Readers also find out where to learn more about C. This book includes tear-out reference card of C functions and statements, a hierarchy chart, and other valuable information. It uses special icons, notes, clues, warnings, and rewards to make understanding easier. And the clear and friendly style presumes no programming knowledge.

Digital Systems: Principles and Applications


Ronald J. Tocci - 1977
    KEY TOPICS For each new device or circuit, the authors describe the principle of the operation, give thorough examples, and then show its actual application. An excellent reference on modern digital systems.

Mathematics of Classical and Quantum Physics


Frederick W. Byron Jr. - 1969
    Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Mathematics: Its Content, Methods and Meaning


A.D. Aleksandrov - 1963
    . . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science

Neural Networks for Pattern Recognition


Christopher M. Bishop - 1996
    After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

A-Level Physics


Roger Muncaster - 1981
    New 'Consolidation' sections and questions designed to provide a link between GCSE and A-level feature in the text.At the end of each section there are many questions - ideal for consolidation and revision - mainly from past A-level examination papers. Over 15 of these past-paper questions have been added in the Fourth Edition. Answers are included.

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

The Hundred-Page Machine Learning Book


Andriy Burkov - 2019
    During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.

Neural Networks: A Comprehensive Foundation


Simon Haykin - 1994
    Introducing students to the many facets of neural networks, this text provides many case studies to illustrate their real-life, practical applications.

Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Introduction to Quantum Mechanics with Applications to Chemistry


Linus Pauling - 1985
    Numerous tables and figures.

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Schaum's Outline of Mathematical Economics


Edward T. Dowling - 1992
    Students know that Schaum's delivers the goods—in faster learning curves,better test scores,and higher grades!If you don't have a lot of time but want to excel in class,this book helps you: Brush up before tests; Find answers fast; Study quickly and more effectively; Get the big picture without spending hours poring over dull texts Schaum's Outlines give you the information teachers expect you to know in a handy and succinct format—without overwhelming you with unnecessary details. You get a complete overview of the subject—and no distracting minutiae. Plus,you get plenty of practice exercises to test your skill. Compatible with any classroom text,Schaum's lets you study at your own pace and reminds you of all the important facts you need to remember—fast! And Schaum's is so complete it's the perfect tool for preparing for graduate or professional exams! Students of mathematical economics apply complex formulas—a challenging task that even the best students find daunting. But this Schaum's guide demystifies tough problems and gives you plenty of fully worked examples! Chapters include: Review. Economic Applications of Graphs and Equations. The Derivative and the Rules of Differentiation. Uses of the Derivative in Mathematics and Economics. Calculus of Multivariable Functions. Calculus of Multivariable Functions in Economics. Exponential and LogarithmicFunctions. Exponential and Logarithmic Functions in Economics. Differentiation of Exponential and Logarithmic Functions. The Fundamentals of Linear (or Matrix) Algebra. Matrix Inversion. Special Determinants and Matrices and Their Use in Economics. Linear Programming: A Graphic Approach. Linear Programming: The Simplex Algorithm. Linear Programming: The Dual. Integral Calculus: The Indefinite Integral. Integral Calculus: The Definite Integral. Differential Equations. Difference Equations. Second-Order Differential Equations and Difference Equations. The Calculus of Variations