Book picks similar to
Basic Category Theory for Computer Scientists by Benjamin C. Pierce
computer-science
math
mathematics
cs
RESTful Web Services
Leonard Richardson - 2007
But can you also build web sites that are usable by machines? That's where the future lies, and that's what RESTful Web Services shows you how to do. The World Wide Web is the most popular distributed application in history, and Web services and mashups have turned it into a powerful distributed computing platform. But today's web service technologies have lost sight of the simplicity that made the Web successful. They don't work like the Web, and they're missing out on its advantages. This book puts the "Web" back into web services. It shows how you can connect to the programmable web with the technologies you already use every day. The key is REST, the architectural style that drives the Web. This book:Emphasizes the power of basic Web technologies -- the HTTP application protocol, the URI naming standard, and the XML markup language Introduces the Resource-Oriented Architecture (ROA), a common-sense set of rules for designing RESTful web services Shows how a RESTful design is simpler, more versatile, and more scalable than a design based on Remote Procedure Calls (RPC) Includes real-world examples of RESTful web services, like Amazon's Simple Storage Service and the Atom Publishing Protocol Discusses web service clients for popular programming languages Shows how to implement RESTful services in three popular frameworks -- Ruby on Rails, Restlet (for Java), and Django (for Python) Focuses on practical issues: how to design and implement RESTful web services and clients This is the first book that applies the REST design philosophy to real web services. It sets down the best practices you need to make your design a success, and the techniques you need to turn your design into working code. You can harness the power of the Web for programmable applications: you just have to work with the Web instead of against it. This book shows you how.
3D Math Primer for Graphics and Game Development
Fletcher Dunn - 2002
The Authors Discuss The Mathematical Theory In Detail And Then Provide The Geometric Interpretation Necessary To Make 3D Math Intuitive. Working C++ Classes Illustrate How To Put The Techniques Into Practice, And Exercises At The End Of Each Chapter Help Reinforce The Concepts. This Book Explains Basic Concepts Such As Vectors, Coordinate Spaces, Matrices, Transformations, Euler Angles, Homogenous Coordinates, Geometric Primitives, Intersection Tests, And Triangle Meshes. It Discusses Orientation In 3D, Including Thorough Coverage Of Quaternions And A Comparison Of The Advantages And Disadvantages Of Different Representation Techniques. The Text Describes Working C++ Classes For Mathematical And Geometric Entities And Several Different Matrix Classes, Each Tailored To Specific Geometric Tasks. Also Included Are Complete Derivations For All The Primitive Transformation Matrices.
Language Implementation Patterns: Techniques for Implementing Domain-Specific Languages
Terence Parr - 2009
Instead of writing code in a general-purpose programming language, you can first build a custom language tailored to make you efficient in a particular domain. The key is understanding the common patterns found across language implementations. Language Design Patterns identifies and condenses the most common design patterns, providing sample implementations of each. The pattern implementations use Java, but the patterns themselves are completely general. Some of the implementations use the well-known ANTLR parser generator, so readers will find this book an excellent source of ANTLR examples as well. But this book will benefit anyone interested in implementing languages, regardless of their tool of choice. Other language implementation books focus on compilers, which you rarely need in your daily life. Instead, Language Design Patterns shows you patterns you can use for all kinds of language applications. You'll learn to create configuration file readers, data readers, model-driven code generators, source-to-source translators, source analyzers, and interpreters. Each chapter groups related design patterns and, in each pattern, you'll get hands-on experience by building a complete sample implementation. By the time you finish the book, you'll know how to solve most common language implementation problems.
Computer Vision: Algorithms and Applications
Richard Szeliski - 2010
However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art?Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.More than just a source of "recipes," this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniquesTopics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book Supplies supplementary course material for students at the associated website, http: //szeliski.org/Book/ Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
The New Turing Omnibus: 66 Excursions In Computer Science
A.K. Dewdney - 1989
K. Dewdney's The Turing Omnibus.Updated and expanded, The Turing Omnibus offers 66 concise, brilliantly written articles on the major points of interest in computer science theory, technology, and applications. New for this tour: updated information on algorithms, detecting primes, noncomputable functions, and self-replicating computers--plus completely new sections on the Mandelbrot set, genetic algorithms, the Newton-Raphson Method, neural networks that learn, DOS systems for personal computers, and computer viruses.Contents:1 Algorithms 2 Finite Automata 3 Systems of Logic 4 Simulation 5 Godel's Theorem 6 Game Trees 7 The Chomsky Hierarchy 8 Random Numbers 9 Mathematical Research 10 Program Correctness 11 Search Trees 12 Error-Corecting Codes 13 Boolean Logic 14 Regular Languages 15 Time and Space Complexity 16 Genetic Algorithms 17 The Random Access Machine 18 Spline Curves 19 Computer Vision 20 Karnaugh Maps 21 The Newton-Raphson Method 22 Minimum Spanning Trees 23 Generative Grammars 24 Recursion 25 Fast Multiplication 26 Nondeterminism 27 Perceptrons 28 Encoders and Multiplexers 29 CAT Scanning 30 The Partition Problem 31 Turing Machines 32 The Fast Fourier Transform 33 Analog Computing 34 Satisfiability 35 Sequential Sorting 36 Neural Networks That Learn 37 Public Key Cryptography 38 Sequential Cirucits 39 Noncomputerable Functions 40 Heaps and Merges 41 NP-Completeness 42 Number Systems for Computing 43 Storage by Hashing 44 Cellular Automata 45 Cook's Theorem 46 Self-Replicating Computers 47 Storing Images 48 The SCRAM 49 Shannon's Theory 50 Detecting Primes 51 Universal Turing Machines 52 Text Compression 53 Disk Operating Systems 54 NP-Complete Problems 55 Iteration and Recursion 56 VLSI Computers 57 Linear Programming 58 Predicate Calculus 59 The Halting Problem 60 Computer Viruses 61 Searching Strings 62 Parallel Computing 63 The Word Problem 64 Logic Programming 65 Relational Data Bases 66 Church's Thesis
Lauren Ipsum
Carlos Bueno - 2011
If the idea of a computer science book without computers upsets you, please close your eyes until you’ve finished reading the rest of this page.The truth is that computer science is not really about the computer. It is just a tool to help you see ideas more clearly. You can see the moon and stars without a telescope, smell the flowers without a fluoroscope, have fun without a funoscope, and be silly sans oscilloscope.You can also play with computer science without... you-know-what. Ideas are the real stuff of computer science. This book is about those ideas, and how to find them.
Introduction to Machine Learning
Ethem Alpaydin - 2004
Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. "Introduction to Machine Learning" is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Understanding the Linux Kernel
Daniel P. Bovet - 2000
The kernel handles all interactions between the CPU and the external world, and determines which programs will share processor time, in what order. It manages limited memory so well that hundreds of processes can share the system efficiently, and expertly organizes data transfers so that the CPU isn't kept waiting any longer than necessary for the relatively slow disks.The third edition of Understanding the Linux Kernel takes you on a guided tour of the most significant data structures, algorithms, and programming tricks used in the kernel. Probing beyond superficial features, the authors offer valuable insights to people who want to know how things really work inside their machine. Important Intel-specific features are discussed. Relevant segments of code are dissected line by line. But the book covers more than just the functioning of the code; it explains the theoretical underpinnings of why Linux does things the way it does.This edition of the book covers Version 2.6, which has seen significant changes to nearly every kernel subsystem, particularly in the areas of memory management and block devices. The book focuses on the following topics:Memory management, including file buffering, process swapping, and Direct memory Access (DMA)The Virtual Filesystem layer and the Second and Third Extended FilesystemsProcess creation and schedulingSignals, interrupts, and the essential interfaces to device driversTimingSynchronization within the kernelInterprocess Communication (IPC)Program executionUnderstanding the Linux Kernel will acquaint you with all the inner workings of Linux, but it's more than just an academic exercise. You'll learn what conditions bring out Linux's best performance, and you'll see how it meets the challenge of providing good system response during process scheduling, file access, and memory management in a wide variety of environments. This book will help you make the most of your Linux system.
The Linux Programming Interface: A Linux and Unix System Programming Handbook
Michael Kerrisk - 2010
You'll learn how to:Read and write files efficiently Use signals, clocks, and timers Create processes and execute programs Write secure programs Write multithreaded programs using POSIX threads Build and use shared libraries Perform interprocess communication using pipes, message queues, shared memory, and semaphores Write network applications with the sockets API While The Linux Programming Interface covers a wealth of Linux-specific features, including epoll, inotify, and the /proc file system, its emphasis on UNIX standards (POSIX.1-2001/SUSv3 and POSIX.1-2008/SUSv4) makes it equally valuable to programmers working on other UNIX platforms.The Linux Programming Interface is the most comprehensive single-volume work on the Linux and UNIX programming interface, and a book that's destined to become a new classic.Praise for The Linux Programming Interface "If I had to choose a single book to sit next to my machine when writing software for Linux, this would be it." —Martin Landers, Software Engineer, Google "This book, with its detailed descriptions and examples, contains everything you need to understand the details and nuances of the low-level programming APIs in Linux . . . no matter what the level of reader, there will be something to be learnt from this book." —Mel Gorman, Author of Understanding the Linux Virtual Memory Manager "Michael Kerrisk has not only written a great book about Linux programming and how it relates to various standards, but has also taken care that bugs he noticed got fixed and the man pages were (greatly) improved. In all three ways, he has made Linux programming easier. The in-depth treatment of topics in The Linux Programming Interface . . . makes it a must-have reference for both new and experienced Linux programmers." —Andreas Jaeger, Program Manager, openSUSE, Novell "Michael's inexhaustible determination to get his information right, and to express it clearly and concisely, has resulted in a strong reference source for programmers. While this work is targeted at Linux programmers, it will be of value to any programmer working in the UNIX/POSIX ecosystem." —David Butenhof, Author of Programming with POSIX Threads and Contributor to the POSIX and UNIX Standards ". . . a very thorough—yet easy to read—explanation of UNIX system and network programming, with an emphasis on Linux systems. It's certainly a book I'd recommend to anybody wanting to get into UNIX programming (in general) or to experienced UNIX programmers wanting to know 'what's new' in the popular GNU/Linux system." —Fernando Gont, Network Security Researcher, IETF Participant, and RFC Author ". . . encyclopedic in the breadth and depth of its coverage, and textbook-like in its wealth of worked examples and exercises. Each topic is clearly and comprehensively covered, from theory to hands-on working code. Professionals, students, educators, this is the Linux/UNIX reference that you have been waiting for." —Anthony Robins, Associate Professor of Computer Science, The University of Otago "I've been very impressed by the precision, the quality and the level of detail Michael Kerrisk put in his book. He is a great expert of Linux system calls and lets us share his knowledge and understanding of the Linux APIs." —Christophe Blaess, Author of Programmation systeme en C sous Linux ". . . an essential resource for the serious or professional Linux and UNIX systems programmer. Michael Kerrisk covers the use of all the key APIs across both the Linux and UNIX system interfaces with clear descriptions and tutorial examples and stresses the importance and benefits of following standards such as the Single UNIX Specification and POSIX 1003.1." —Andrew Josey, Director, Standards, The Open Group, and Chair of the POSIX 1003.1 Working Group "What could be better than an encyclopedic reference to the Linux system, from the standpoint of the system programmer, written by none other than the maintainer of the man pages himself? The Linux Programming Interface is comprehensive and detailed. I firmly expect it to become an indispensable addition to my programming bookshelf." —Bill Gallmeister, Author of POSIX.4 Programmer's Guide: Programming for the Real World ". . . the most complete and up-to-date book about Linux and UNIX system programming. If you're new to Linux system programming, if you're a UNIX veteran focused on portability while interested in learning the Linux way, or if you're simply looking for an excellent reference about the Linux programming interface, then Michael Kerrisk's book is definitely the companion you want on your bookshelf." —Loic Domaigne, Chief Software Architect (Embedded), Corpuls.com
Fundamentals of Software Architecture: An Engineering Approach
Mark Richards - 2020
Until now. This practical guide provides the first comprehensive overview of software architecture's many aspects. You'll examine architectural characteristics, architectural patterns, component determination, diagramming and presenting architecture, evolutionary architecture, and many other topics.Authors Neal Ford and Mark Richards help you learn through examples in a variety of popular programming languages, such as Java, C#, JavaScript, and others. You'll focus on architecture principles with examples that apply across all technology stacks.
xUnit Test Patterns: Refactoring Test Code
Gerard Meszaros - 2003
An effective testing strategy will deliver new functionality more aggressively, accelerate user feedback, and improve quality. However, for many developers, creating effective automated tests is a unique and unfamiliar challenge. xUnit Test Patterns is the definitive guide to writing automated tests using xUnit, the most popular unit testing framework in use today. Agile coach and test automation expert Gerard Meszaros describes 68 proven patterns for making tests easier to write, understand, and maintain. He then shows you how to make them more robust and repeatable--and far more cost-effective. Loaded with information, this book feels like three books in one. The first part is a detailed tutorial on test automation that covers everything from test strategy to in-depth test coding. The second part, a catalog of 18 frequently encountered "test smells," provides trouble-shooting guidelines to help you determine the root cause of problems and the most applicable patterns. The third part contains detailed descriptions of each pattern, including refactoring instructions illustrated by extensive code samples in multiple programming languages. Topics covered includeWriting better tests--and writing them faster The four phases of automated tests: fixture setup, exercising the system under test, result verification, and fixture teardown Improving test coverage by isolating software from its environment using Test Stubs and Mock Objects Designing software for greater testability Using test "smells" (including code smells, behavior smells, and project smells) to spot problems and know when and how to eliminate them Refactoring tests for greater simplicity, robustness, and execution speed This book will benefit developers, managers, and testers working with any agile or conventional development process, whether doing test-driven development or writing the tests last. While the patterns and smells are especially applicable to all members of the xUnit family, they also apply to next-generation behavior-driven development frameworks such as RSpec and JBehave and to other kinds of test automation tools, including recorded test tools and data-driven test tools such as Fit and FitNesse.Visual Summary of the Pattern Language Foreword Preface Acknowledgments Introduction Refactoring a Test PART I: The Narratives Chapter 1 A Brief Tour Chapter 2 Test Smells Chapter 3 Goals of Test Automation Chapter 4 Philosophy of Test Automation Chapter 5 Principles of Test Automation Chapter 6 Test Automation Strategy Chapter 7 xUnit Basics Chapter 8 Transient Fixture Management Chapter 9 Persistent Fixture Management Chapter 10 Result Verification Chapter 11 Using Test Doubles Chapter 12 Organizing Our Tests Chapter 13 Testing with Databases Chapter 14 A Roadmap to Effective Test Automation PART II: The Test Smells Chapter 15 Code Smells Chapter 16 Behavior Smells Chapter 17 Project Smells PART III: The Patterns Chapter 18 Test Strategy Patterns Chapter 19 xUnit Basics Patterns Chapter 20 Fixture Setup Patterns Chapter 21 Result Verification Patterns Chapter 22 Fixture Teardown Patterns Chapter 23 Test Double Patterns Chapter 24 Test Organization Patterns Chapter 25 Database Patterns Chapter 26 Design-for-Testability Patterns Chapter 27 Value Patterns PART IV: Appendixes Appendix A Test Refactorings Appendix B xUnit Terminology Appendix C xUnit Family Members Appendix D Tools Appendix E Goals and Principles Appendix F Smells, Aliases, and Causes Appendix G Patterns, Aliases, and Variations Glossary References Index "
How to Prove It: A Structured Approach
Daniel J. Velleman - 1994
The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5
The Psychology of Computer Programming
Gerald M. Weinberg - 1971
Weinberg adds new insights and highlights the similarities and differences between now and then. Using a conversational style that invites the reader to join him, Weinberg reunites with some of his most insightful writings on the human side of software engineering.Topics include egoless programming, intelligence, psychological measurement, personality factors, motivation, training, social problems on large projects, problem-solving ability, programming language design, team formation, the programming environment, and much more.Dorset House Publishing is proud to make this important text available to new generations of programmers -- and to encourage readers of the first edition to return to its valuable lessons.