Book picks similar to
Mining the Web by Soumen Chakrabarti
programming
science
разработка
artificial-intelligence
Knock-Out Blackjack: The Easiest Card-Counting System Ever Devised
Olaf Vancura - 1998
The scientifically devised unbalanced K-O count can be used profitably anywhere blackjack is played: Las Vegas, Atlantic City, Mississippi, riverboat casinos, Native American casinos, the Bahamas, and on cruise ships.This second edition, revised and expanded, is now easier to use than ever. Step into the ring and learn to:Implement an abbreviated system—the “K-O Rookie”— that’s powerful enough to yield a player advantage and simple enough to be mastered in a few hours.Advance to a profession-level system—the “K-O Preferred”—which performs on par with the most sophisticated systems on the market.Win the cat-and-mouse game between the casinos and the players.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Getting Started with SQL: A Hands-On Approach for Beginners
Thomas Nield - 2016
If you're a business or IT professional, this short hands-on guide teaches you how to pull and transform data with SQL in significant ways. You will quickly master the fundamentals of SQL and learn how to create your own databases.Author Thomas Nield provides exercises throughout the book to help you practice your newfound SQL skills at home, without having to use a database server environment. Not only will you learn how to use key SQL statements to find and manipulate your data, but you'll also discover how to efficiently design and manage databases to meet your needs.You'll also learn how to:Explore relational databases, including lightweight and centralized modelsUse SQLite and SQLiteStudio to create lightweight databases in minutesQuery and transform data in meaningful ways by using SELECT, WHERE, GROUP BY, and ORDER BYJoin tables to get a more complete view of your business dataBuild your own tables and centralized databases by using normalized design principlesManage data by learning how to INSERT, DELETE, and UPDATE records
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
Matthew A. Russell - 2011
You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Mining of Massive Datasets
Anand Rajaraman - 2011
This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.
WPF 4 Unleashed
Adam Nathan - 2010
Windows Presentation Foundation (WPF) is the recommended technology for creating Windows user interfaces, giving you the power to create richer and more compelling applications than you dreamed possible. Whether you want to develop traditional user interfaces or integrate 3D graphics, audio/video, animation, dynamic skinning, multi-touch, rich document support, speech recognition, or more, WPF enables you to do so in a seamless, resolution-independent manner. WPF 4 Unleashed is the authoritative book that covers it all, in a practical and approachable fashion, authored by WPF guru and Microsoft developer Adam Nathan. Covers everything you need to know about Extensible Application Markup Language (XAML) Examines the WPF feature areas in incredible depth: controls, layout, resources, data binding, styling, graphics, animation, and more Highlights the latest features, such as multi-touch, text rendering improvements, XAML language enhancements, new controls, the Visual State Manager, easing functions, and much more Delves into topics that aren't covered by most books: 3D, speech, audio/video, documents, effects Shows how to create popular UI elements, such as Galleries, ScreenTips, and more Demonstrates how to create sophisticated UI mechanisms, such as Visual Studio-like collapsible/dockable panes Explains how to create first-class custom controls for WPF Demonstrates how to create hybrid WPF software that leverages Windows Forms, DirectX, ActiveX, or other non-WPF technologies Explains how to exploit new Windows 7 features, such as Jump Lists and taskbar customizations
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
The American West: Cowboys
Grayson Wyatt - 2016
But behind it were real men whose hard work and hard play, stoic toughness, and code of honor helped tame the American West. The epic cattle drives that were so much a part of the cowboys' heyday lasted only an astonishingly brief two decades. But the cowboy is still a basic part of the American character. Here, from historian Grayson Wyatt, is their surprising and little-told story.
Blazing Bicycle Saddles
James Clarke - 2011
Over the years many other regions were explored. The story is told by their not terribly good leader.
Coyote Breed
Alan David - 2016
Praise for Alan David 'A classic of the genre.' – Tom Kasey, bestselling author of Trade Off.Alan David is a prolific writer of over 500 novels in a wide range of genres, from classic westerns, to historical thrillers. His other western novels include Fight or Die, Gun Hell, Gun Wages, Wildmen and Draw or Die. Pioneering Press is an imprint of Endeavour Press, the UK’s leading independent digital publisher. We publish new and classic westerns by authors from the US and the UK. Sign up to our newsletterFollow us on Twitter: @PioneeringPress
Renegade Star Books 1-6 + Prequel
J.N. Chaney - 2020
So long as he can keep his ship floating, he's free to live the life he wants.But that all changes when he meets Abigail Pryar, a nun looking for safe passage out of the system.Too bad there's something off about the cargo she's carrying.Jace knows he shouldn't ask too many questions, but when odd sounds start coming from inside the large, metal box, he can't help but check it out.Big mistake.This boxset contains the first six books of the Renegade Star series, plus a bonus prequel book:Renegade StarRenegade AtlasRenegade MoonRenegade LostRenegade FleetRenegade EarthNameless: Abigail’s Story
What Lies Hidden
C.G. Cooper - 2017
Up until now, the most dangerous become fiery protesters or literary fanatics.Times have changed. A new threat has emerged, insidious and hell bent on capitalizing on the naivete of coming-of-age youths ensconced in higher learning. How will one young woman’s death start to unravel the mystery, and will a broken spy figure it out in time?
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.