Beyond Einstein: The Cosmic Quest for the Theory of the Universe


Michio Kaku - 1987
    What is superstring theory and why is it important? This revolutionary breakthrough may well be the fulfillment of  Albert Einstein's lifelong dream of a Theory of Everything, uniting the laws of physics into a single description explaining all the known forces in the universe. Co-authored by one of the leading pioneers in superstrings, Michio Kaku, and completely revised and updated with the newest groundbreaking research, the book approaches scientific questions with the excitement of a detective story, offering a fascinating look at the new science that may make the impossible possible.

Mathematical Methods in the Physical Sciences


Mary L. Boas - 1967
    Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering


Steven H. Strogatz - 1994
    The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.

Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions


Lisa Randall - 2005
    It may hide additional dimensions of space other than the familier three we recognize. There might even be another universe adjacent to ours, invisible and unattainable . . . for now.Warped Passages is a brilliantly readable and altogether exhilarating journey that tracks the arc of discovery from early twentieth-century physics to the razor's edge of modern scientific theory. One of the world's leading theoretical physicists, Lisa Randall provides astonishing scientific possibilities that, until recently, were restricted to the realm of science fiction. Unraveling the twisted threads of the most current debates on relativity, quantum mechanics, and gravity, she explores some of the most fundamental questions posed by Nature—taking us into the warped, hidden dimensions underpinning the universe we live in, demystifying the science of the myriad worlds that may exist just beyond our own.

Inorganic Chemistry


Gary L. Miessler - 1991
    Chapter topics include atomic structure, molecular orbitals, organometallic chemistry, simple bonding theory, symmetry and group theory, and more. For chemists and other professionals who want to update or improve their background in the field.

Modern Quantum Mechanics


J.J. Sakurai - 1985
    DLC: Quantum theory.

A First Course in Abstract Algebra


John B. Fraleigh - 1967
    Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.

Transport Phenomena


R. Byron Bird - 1960
    * Enhanced sections throughout text provide much firmer foundation than the first edition. * Literature citations are given throughout for reference to additional material.

Coming of Age in the Milky Way


Timothy Ferris - 1988
    From the first time mankind had an inkling of the vast space that surrounds us, those who study the universe have had to struggle against political and religious preconceptions. They have included some of the most charismatic, courageous, and idiosyncratic thinkers of all time. In Coming of Age in the Milky Way, Timothy Ferris uses his unique blend of rigorous research and captivating narrative skill to draw us into the lives and minds of these extraordinary figures, creating a landmark work of scientific history.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

An Introduction to Thermal Physics


Daniel V. Schroeder - 1999
    Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.

How I Killed Pluto and Why It Had It Coming


Mike Brown - 2010
    Then, in 2005, astronomer Mike Brown made the discovery of a lifetime: a tenth planet, Eris, slightly bigger than Pluto. But instead of its resulting in one more planet being added to our solar system, Brown’s find ignited a firestorm of controversy that riled the usually sedate world of astronomy and launched him into the public eye. The debate culminated in the demotion of Pluto from real planet to the newly coined category of “dwarf” planet. Suddenly Brown was receiving hate mail from schoolchildren and being bombarded by TV reporters—all because of the discovery he had spent years searching for and a lifetime dreaming about.Filled with both humor and drama, How I Killed Pluto and Why It Had It Coming is Mike Brown’s engaging first-person account of the most tumultuous year in modern astronomy—which he inadvertently caused. As it guides readers through important scientific concepts and inspires us to think more deeply about our place in the cosmos, it is also an entertaining and enlightening personal story: While Brown sought to expand our understanding of the vast nature of space, his own life was changed in the most immediate, human ways by love, birth, and death. A heartfelt and personal perspective on the demotion of everyone’s favorite farflung planet, How I Killed Pluto and Why It Had It Coming is the book for anyone, young or old, who has ever dreamed of exploring the universe—and who among us hasn’t?

Chemical Reaction Engineering


Octave Levenspiel - 1962
    It's goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex.

Janeway's Immunobiology


Kenneth M. Murphy - 2007
    The Eighth Edition has been thoroughly revised and updated and is available in both print and e-book formats.Janeway s Immunobiology continues to set the standard for currency and authority with its clear writing style and organization, uniform art program, and scientific accuracy. It presents a consistent point of view throughout that of the host s interaction with an environment containing many species of potentially harmful microorganisms. The full-color art program is conceptually coherent and illustrates the processes and mechanisms underlying the concepts in the text. The 16 chapters in this readable, accessible textbook are organized and presented in such a way as to help deliver a complete one-semester immunology course, beginning with innate immunity, then moving to adaptive immunity, and ending with applied clinical immunology.Discussion questions are provided at the end of Chapters 2 to 16. These questions can be used for review, or as the basis for discussion in class or in informal study groups. Summaries conclude each section and each chapter. As in previous editions, a caduceus icon in the margins indicates topics which are correlated to Case Studies in Immunology, Sixth Edition by Geha and Notarangelo.New in the Eighth EditionInnate immunity has been updated and expanded and is now presented in two separate chapters (Chapters 2 and 3), as well as being further emphasized in the rest of the textbook. Chapter 2 covers antimicrobial peptides and the complement system, and Chapter 3 deals with cellular innate receptors and cell-mediated innate immunity (e.g. TLRs, phagocytosis, NK cells, interferon production, innate-like lymphocytes). The section on complement has been reworked and reconceived explaining the lectin pathway first making it easier to teach by placing it into the context of innate recognition. Evolution is now incorporated throughout the text, helping students see similar strategies used by different organisms. The text and figures of Chapter 7 Signaling Through Immune System Receptors have been revised to present a cohesive synthesis of signaling for immunology, focusing on improved illustration of antigen recognition signaling and lymphocyte activation. Signaling through other receptors is dealt with wherever appropriate throughout the book. Updated chapter on B-cell immune responses (Chapter 10), especially on trafficking of B cells in peripheral lymphoid organs (e.g. lymph nodes) and the locations at which they encounter antigen. Coverage of mucosal immunity (Chapter 12) has been brought up to date, including responses to the commensal microbiota and the role of specialized dendritic cells and the regulatory T cells in maintaining tolerance to food antigens and commensal bacteria. Chapter 13, Failures of Host Defense Mechanisms, has been reorganized and revised to structure an understanding of primary immunodeficiencies in the context of developmental pathways. Chapter 16, Manipulation of the Immune Response, has been heavily revised to include a greater emphasis on clinical issues and a complete update of immunotherapeutics and vaccines. Many new and revised figures illustrate the processes and mechanisms underlying the concepts presented in the text. The icons used have been updated and expanded to incorporate a new emphasis on signaling pathways. New references have been added throughout the text.

A First Course in General Relativity


Bernard F. Schutz - 1985
    This textbook, based on the author's own undergraduate teaching, develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth. It reinforces this understanding by making a detailed study of the theory's most important applications - neutron stars, black holes, gravitational waves, and cosmology - using the most up-to-date astronomical developments. The book is suitable for a one-year course for beginning graduate students or for undergraduates in physics who have studied special relativity, vector calculus, and electrostatics. Graduate students should be able to use the book selectively for half-year courses.