Mathematical Elements for Computer Graphics


David F. Rogers - 1976
    It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.

The Calculus Gallery: Masterpieces from Newton to Lebesgue


William Dunham - 2004
    This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. Students of literature read Shakespeare; students of music listen to Bach, he writes. But this tradition of studying the major works of the masters is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation.Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original category theorem (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable.Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.

Mastering Excel Macros: Introduction (Book 1)


Mark Moore - 2014
    Everybody wants to learn them. You're not a programmer though. How is a non technical user going to learn how to program? You do want to use macros to make your work easier but are you really going to sit down with a huge programming textbook and work your way through every. single. boring. page? Like most people, you'll start with great enthusiasm and vigor but after a few chapters, the novelty wears off. It gets boring. I'm going to try and change that and make learning macro programming entertaining and accessible to non-techies. First of all, programming Excel macros is a huge topic. Let's eat the elephant one bite at a time. Instead of sitting down with a dry, heavy text, you will read very focused, to the point topics. You can then immediately use what you learned in the real world. This is the first lesson in the series. You will learn what macros are, how to access them, a tiny bit of programming theory (just so you have a clue as to what's going on) and how to record macros. As with all my other lessons, this one has a follow along workbook that you can use to work through the exercises. The images in the lessons are based on Excel 2013 for Windows.

Introduction to Graph Theory


Richard J. Trudeau - 1994
    This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

On Numbers and Games


John H. Conway - 1976
    Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.

Fintech in a Flash: Financial Technology Made Easy


Agustin Rubini - 2017
    There are more than 5000 fintech startups operating, and 50 of them have already reached a billion-dollar valuation. The scope of this market goes way beyond online payments. Financial technology promises to change the way we manage our money online, disrupting the landscape of the financial services industry is being disrupted. Understanding its many facets is the key to navigating the complex nuances of this global industry.Fintech in a Flash is your comprehensive guide to the future of banking and insurance. The book aims to break down the key concepts in a way that will help you understand every aspect so that you can take advantage of new technologies. Inside you’ll find an array of hot topics such as online payments, crowdfunding, challenger banks, online insurance, digital lending, big data, and digital commerce. It will make you rethink the way that you manage your money online, and even find new ways of making online payments. Comprehensive, organized, and detailed, this guide is your go-to source for everything you need to confidently navigate the ever-changing scene of this booming industry.If you decide to buy this book now, you'll get: Easy to understand explanations of the 14 main areas of fintech The author's view on the future of each of these areas Insight into the main fintech hubs in the world Insight into the so called Unicorns, the fintech firms that have made it past a $1 billion valuation More than 100 upcoming fintech companies to watch About the Author: Agustín Rubini is an argentinean-born economist, master in international business, and Director at Banking Innovations. Passionate about building the future of financial services, Agustín spends much of his time speaking and writing on financial technology and advising businesses on innovation and digital transformation. He is a specialist in driving changes in top class banks that want to lead in how customers manage their money online. Tags: fintech, financial technology, financial services technology, money online, online payment, online insurance, insurtech, investing online, wealth management online, wealthtech, regtech, cybercrime, digital lending, digital commerce, ecommerce, e-commerce. Get started immediately Download now and take the first step on your very own road to mastering fintech. Scroll to the top of the page and hit the buy button.

Statistics for Psychology


Arthur Aron - 1993
    This approach constantly reminds students of the logic behind what they are learning, and each procedure is taught both verbally and numerically, which helps to emphasize the concepts. Thoroughly revised, with new content and many new practice examples, this text takes the reader from basic procedures through analysis of variance (ANOVA). Students cover statistics and also learn to read and inderstand research articles. - SPSS examplesincluded with each procedure - Dozens of examples updated (especially the in-the-research-literature ones) - Reorganization - The self-contained chapters on correlation and regression have been moved after t-test and analysis of variance - Emphasis on definitional formulas - As opposed to computational formulas - Practical, up-to-date excerpts - For each procedure, the text explains how results are described in research articles. example being described in each way - Interesting examples throughout - Often include studies of or by researchers of diverse ethnicities - Complete package of ancillary materials - A web page with additional practice problems and extensive interactive study materials, plus four mini chapters covering additional material not in the text, a very substantial test bank; an instructors' manual that provides sample syllabi, lecture outlines, and ready-to-copy (or download) power-point slides or transparencies with examples not in the book; and a very complete students' study guide that also provides a thorough workbook for using SPSS with this book.

The Book of Numbers: The Secret of Numbers and How They Changed the World


Peter J. Bentley - 2008
    Indeed, numbers are part of every discipline in the sciences and the arts.With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:The earliest ideas of numbers and counting Patterns, logic, calculating Natural, perfect, amicable and prime numbers Numerology, the power of numbers, superstition The computer, the Enigma Code Infinity, the speed of light, relativity Complex numbers The Big Bang and Chaos theories The Philosopher's Stone. The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.

Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks


Persi Diaconis - 2011
    Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge.Diaconis and Graham tell the stories--and reveal the best tricks--of the eccentric and brilliant inventors of mathematical magic. The book exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card Monte, traces the history of mathematical magic back to the oldest mathematical trick--and much more.

Numsense! Data Science for the Layman: No Math Added


Annalyn Ng - 2017
    Sold in over 85 countries and translated into more than 5 languages.---------------Want to get started on data science?Our promise: no math added.This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations and visuals.Popular concepts covered include:- A/B Testing- Anomaly Detection- Association Rules- Clustering- Decision Trees and Random Forests- Regression Analysis- Social Network Analysis- Neural NetworksFeatures:- Intuitive explanations and visuals- Real-world applications to illustrate each algorithm- Point summaries at the end of each chapter- Reference sheets comparing the pros and cons of algorithms- Glossary list of commonly-used termsWith this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.

Elements of Programming


Alexander Stepanov - 2009
    And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Multivariable Calculus


James Stewart - 1991
    In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.

Linear Programming and Network Flows--Solutions Manual


Mokhtar S. Bazaraa - 1977