University Physics with Modern Physics


Hugh D. Young - 1949
    Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.

Paul Wilmott Introduces Quantitative Finance (The Wiley Finance Series)


Paul Wilmott - 2001
    Adapted from the comprehensive, even epic, works Derivatives and Paul Wilmott on Quantitative Finance, Second Edition, it includes carefully selected chapters to give the student a thorough understanding of futures, options and numerical methods. Software is included to help visualize the most important ideas and to show how techniques are implemented in practice. There are comprehensive end-of-chapter exercises to test students on their understanding.

Elements of Information Theory


Thomas M. Cover - 1991
    Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Statistical Rethinking: A Bayesian Course with Examples in R and Stan


Richard McElreath - 2015
    Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

Statistics for Management


Richard I. Levin - 1978
    Like its predecessors, the seventh edition includes the absolute minimum of mathematical/statistical notation necessary to teach the material. Concepts are fully explained in simple, easy-to-understand language as they are presented, making the book an excellent source from which to learn and teach. After each discussion, readers are guided through real-world examples to show how book principles work in professional practice. Includes easy-to-understand explanations of difficult statistical topics, such as sampling distributions, relationship between confidence level and confidence interval, interpreting r-square. A complete package of teaching/learning aids is provided in every chapter, including chapter review exercises, chapter concepts tests,"Statistics at Work" conceptual cases, "Computer Database Exercises," "From the Textbook to the Real-World Examples." This ISBN is in two volumes Part A and Part B.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Love and Math: The Heart of Hidden Reality


Edward Frenkel - 2013
    In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man’s journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century’s leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat’s last theorem, that had seemed intractable before.At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

Solutions Manual To Accompany Applied Mathematics And Modeling For Chemical Engineers


Richard G. Rice - 1996
    

The Math of Life and Death: 7 Mathematical Principles That Shape Our Lives


Kit Yates - 2019
    But for those of us who left math behind in high school, the numbers and figures hurled at us as we go about our days can sometimes leave us scratching our heads and feeling as if we’re fumbling through a mathematical minefield. In this eye-opening and extraordinarily accessible book, mathemati­cian Kit Yates illuminates hidden principles that can help us understand and navigate the chaotic and often opaque surfaces of our world. In The Math of Life and Death, Yates takes us on a fascinating tour of everyday situations and grand-scale applications of mathematical concepts, including exponential growth and decay, optimization, statistics and probability, and number systems. Along the way he reveals the mathematical undersides of controversies over DNA testing, medical screening results, and historical events such as the Chernobyl disaster and the Amanda Knox trial. Readers will finish this book with an enlightened perspective on the news, the law, medicine, and history, and will be better equipped to make personal decisions and solve problems with math in mind, whether it’s choosing the shortest checkout line at the grocery store or halting the spread of a deadly disease.

The Century vocabulary builder


Garland Greever - 2003
    This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book.

Inspiring Resilience in Fearful and Reactive Dogs


Sally Gutteridge - 2018
     Written by a long-term dog behaviour specialist and founder of Canine Principles, canine education provider, this book will provide all the understanding you need. You will learn: What your dog is trying to tell you. How to communicate in a way that you both understand. How to ensure you are fully meeting your dog’s needs. Why your dog acts up and why he can’t help it. Why walking your dog might not be the best choice. How your dog sees the world. Why your dog barks at things. Which things scare your dog. Brain work to relax your dog. How to assess your dog’s personality. How your dog’s brain stores information. Why your dog makes bad choices and how to change those choices for better ones. How dogs experience stress and what we can do to help them. Whether your dog is an introvert or extrovert and how that affects his behaviour. How to change a negative bias to a positive one. Simple solutions to make your dog feel secure. How to teach self-belief and confidence. And much, much more. Whether you are a desperate dog guardian or a professional canine coach looking to expand your training toolkit, this book is an invaluable addition to your bookshelf.

Discovering Statistics Using R


Andy Field - 2012
    Like its sister textbook, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is enhanced by a cast of characters to help the reader on their way, hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more.

Operations Research: Applications and Algorithms (with CD-ROM and InfoTrac)


Wayne L. Winston - 1987
    It moves beyond a mere study of algorithms without sacrificing the rigor that faculty desire. As in every edition, Winston reinforces the book's successful features and coverage with the most recent developments in the field. The Student Suite CD-ROM, which now accompanies every new copy of the text, contains the latest versions of commercial software for optimization, simulation, and decision analysis.