Book picks similar to
A Different Universe: Reinventing Physics from the Bottom Down by Robert B. Laughlin
science
physics
non-fiction
philosophy
Impossibility: The Limits of Science and the Science of Limits
John D. Barrow - 1998
Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.
The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics
Robert Oerter - 2005
The first, which describes the force of gravity, is widely known: Einstein's General Theory of Relativity. But the theory that explains everything else--the Standard Model of Elementary Particles--is virtually unknown among the general public.In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge--and reveals the sublime structure that underlies the world as we know it.
Time Reborn: From the Crisis in Physics to the Future of the Universe
Lee Smolin - 2013
You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.
The Quantum Story: A History in 40 Moments
Jim Baggott - 2011
From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it.Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents.Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it.This is quantum theory, and this book tells its story.Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes -- significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world.Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
Black Holes and Baby Universes and Other Essays
Stephen Hawking - 1993
13 extraordinary essays shed new light on the mysteries of the universe & on one of the most brilliant thinkers of our time.In his phenomenal bestseller A Brief History of Time, Stephen Hawking literally transformed the way we think about physics, the universe, reality itself. In these thirteen essays and one remarkable extended interview, the man widely regarded as the most brilliant theoretical physicist since Einstein returns to reveal an amazing array of possibilities for understanding our universe. Building on his earlier work, Hawking discusses imaginary time, how black holes can give birth to baby universes, and scientists’ efforts to find a complete unified theory that would predict everything in the universe. With his characteristic mastery of language, his sense of humor and commitment to plain speaking, Stephen Hawking invites us to know him better—and to share his passion for the voyage of intellect and imagination that has opened new ways to understanding the very nature of the cosmos.
The Equation That Couldn't Be Solved: How Mathematical Genius Discovered the Language of Symmetry
Mario Livio - 2005
Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
The Character of Physical Law
Richard P. Feynman - 1964
He maintains at the outset that the importance of a physical law isn't "how clever we are to have found it out, but...how clever nature is to pay attention to it" & tends his discussions toward a final exposition of the elegance & simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, The Character of Physical Law is a statement of what is most remarkable in nature. His enlightened approach, wit & enthusiasm make this a memorable exposition of the scientist's craft. The Law of Gravitation is the principal example. Relating the details of its discovery & stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics & physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of axioms. The principles of conservation, symmetry & time-irreversibility are then considered in relation to developments in classical & modern physics. In his final lecture he develops his own analysis of the process & future of scientific discovery. Like any set of oral reflections, The Character of Physical Law has value as a demonstration of a mind in action. The reader is particularly lucky in Feynman. One of the most eminent & imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He's best known for work on the quantum theory of the electromagnetic field, as well as for later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for an "outstanding contribution to knowledge in mathematical & physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society & was awarded the Nobel Prize.
About Time: Einstein's Unfinished Revolution
Paul C.W. Davies - 1995
The eternal questions of science and religion were profoundly recast by Einstein's theory of relativity and its implications that time can be warped by motion and gravitation, and that it cannot be meaningfully divided into past, present, and future. In About Time, Paul Davies discusses the big bang theory, chaos theory, and the recent discovery that the universe appears to be younger than some of the objects in it, concluding that Einstein's theory provides only an incomplete understanding of the nature of time. Davies explores unanswered questions such as: * Does the universe have a beginning and an end? * Is the passage of time merely an illusion? * Is it possible to travel backward -- or forward -- in time? About Time weaves physics and metaphysics in a provocative contemplation of time and the universe.
Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science
David Lindley - 2007
Heisenberg’s principle implied that scientific quantities/concepts do not have absolute, independent meaning, but acquire meaning only in terms of the experiments used to measure them. This proposition, undermining the cherished belief that science could reveal the physical world with limitless detail and precision, placed Heisenberg in direct opposition to the revered Albert Einstein. The eminent scientist Niels Bohr, Heisenberg’s mentor and Einstein’s long-time friend, found himself caught between the two.Uncertainty chronicles the birth and evolution of one of the most significant findings in the history of science, and portrays the clash of ideas and personalities it provoked. Einstein was emotionally as well as intellectually determined to prove the uncertainty principle false. Heisenberg represented a new generation of physicists who believed that quantum theory overthrew the old certainties; confident of his reasoning, Heisenberg dismissed Einstein’s objections. Bohr understood that Heisenberg was correct, but he also recognized the vital necessity of gaining Einstein’s support as the world faced the shocking implications of Heisenberg’s principle.
The Cosmic Landscape: String Theory and the Illusion of Intelligent Design
Leonard Susskind - 2005
Line drawings.
Quantum: Einstein, Bohr and the Great Debate About the Nature of Reality
Manjit Kumar - 2007
And yet for many years it was equally baffling for scientists themselves. Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its heart.For 60 years most physicists believed that quantum theory denied the very existence of reality itself. Yet Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century.Quantum sets the science in the context of the great upheavals of the modern age. In 1925 the quantum pioneers nearly all hailed from upper-middle-class academic families; most were German; and their average age was 24. But it was their irrational, romantic spirit, formed in reaction to the mechanised slaughter of the First World War that inspired their will to test science to its limits.The essential read for anyone fascinated by this complex and thrilling story and by the band of young men at its heart.
Why Does E=mc²? (And Why Should We Care?)
Brian Cox - 2009
Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.
Thirty Years that Shook Physics: The Story of Quantum Theory
George Gamow - 1966
Gamow, physicist and gifted writer, has sketched an intriguing portrait of the scientists and clashing ideas that made the quantum revolution…”—Christian Science MonitorIn 1900, German physicist Max Planck postulated that light, or radiant energy can exist only in the form of discrete packages or quanta. This profound insight, along with Einstein's equally momentous theories of relativity, completely revolutionized man's view of matter, energy, and the nature of physics itself.In this lucid layman's introduction to quantum theory, an eminent physicist and noted popularizer of science traces the development of quantum theory from the turn of the century to about 1930—from Planck's seminal concept (still developing) to anti-particles, mesons and Enrico Fermi's nuclear research. Gamow was not just a spectator at the theoretical breakthroughs which fundamentally altered our view of the universe, he was an active participant who made important contributions of his own. This “insider's” vantage point lends special validity to his careful, accessible explanation of Heisenberg's Uncertainty Principle, Neils Bohr's model of the atom, the pilot waves of Louis de Broglie and other path-breaking ideas.In addition, Gamow recounts a wealth of revealing personal anecdotes which give a warm human dimension to many giants of 20th-century physics. He end the book with the Blegdamsvej Faust, a delightful play written in 1932 by Niels Bohr's students and colleagues to satirize the epochal developments that were revolutionizing physics. This celebrated play is available only in this volume.Written in a clear, lively style, and enhanced by 12 photographs (including candid shots of Rutherford, Bohr, Pauli, Heisenberg, Fermi and other notables), Thirty Years that Shook Physics offers both scientists and laymen a highly readable introduction to the brilliant conception that helped unlock many secrets of energy and matter and laid the groundwork for future discoveries.(Back Cover)
Physics of the Impossible
Michio Kaku - 2008
In Physics of the Impossible, the renowned physicist Michio Kaku explores to what extent the technologies and devices of science fiction that are deemed equally impossible today might well become commonplace in the future.From teleportation to telekinesis, Kaku uses the world of science fiction to explore the fundamentals—and the limits—of the laws of physics as we know them today. He ranks the impossible technologies by categories—Class I, II, and III, depending on when they might be achieved, within the next century, millennia, or perhaps never. In a compelling and thought-provoking narrative, he explains:· How the science of optics and electromagnetism may one day enable us to bend light around an object, like a stream flowing around a boulder, making the object invisible to observers “downstream”· How ramjet rockets, laser sails, antimatter engines, and nanorockets may one day take us to the nearby stars· How telepathy and psychokinesis, once considered pseudoscience, may one day be possible using advances in MRI, computers, superconductivity, and nanotechnology· Why a time machine is apparently consistent with the known laws of quantum physics, although it would take an unbelievably advanced civilization to actually build oneKaku uses his discussion of each technology as a jumping-off point to explain the science behind it. An extraordinary scientific adventure, Physics of the Impossible takes readers on an unforgettable, mesmerizing journey into the world of science that both enlightens and entertains.
The Evolution of Physics: From Early Concepts to Relativity and Quanta
Albert Einstein - 1938
For the alternate cover edition by Simon & Schuster, see hereClear and concise explanations of the development of theories explaining physical phenomena.