Book picks similar to
A Course in Abstract Analysis by John B. Conway
mathematics
mmath
vacib
26-real-analysis
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
A Short Account of the History of Mathematics
W. Rouse Ball - 2020
Maisel, Monk) calmly tells the tale of how the ancient Greeks formalized the study of mathematics based on Phoenician teachings. Bedtime stories are narrated by the world’s most celebrated voices and written with no beginning, middle, or end so you don’t stay up to hear what happens next. They're interesting enough to give your mind something to focus on, but delivered in a way that encourages sleep. This title is part of the Audible Sleep Collection, exclusive audio experiences created to invite relaxation and sleep. New and free for members.Public Domain (P)2020 Audible
The Psychology of Invention in the Mathematical Field
Jacques Hadamard - 1945
Role of the unconscious in invention; the medium of ideas — do they come to mind in words? in pictures? in mathematical terms? Much more. "It is essential for the mathematician, and the layman will find it good reading." — Library Journal.
The Book of Numbers
John H. Conway - 1995
Whether it is a visualization of the Catalan numbers or an explanation of how the Fibonacci numbers occur in nature, there is something in here to delight everyone. The diagrams and pictures, many of which are in color, make this book particularly appealing and fun. A few of the discussions may be confusing to those who are not adept mathematicians; those who are may be irked that certain facts are mentioned without an accompanying proof. Nonetheless, The Book of Numbers will succeed in infecting any reader with an enthusiasm for numbers.
Games and Decisions: Introduction and Critical Survey
R. Duncan Luce - 1957
Clear, comprehensive coverage of utility theory, 2-person zero-sum games, 2-person non-zero-sum games, n-person games, individual and group decision-making, more. Bibliography.
Mathematical Elements for Computer Graphics
David F. Rogers - 1976
It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.
Adventures of a Mathematician
Stanislaw M. Ulam - 1976
As a member of the Los Alamos National Laboratory from 1944 on, Ulam helped to precipitate some of the most dramatic changes of the postwar world. He was among the first to use and advocate computers for scientific research, originated ideas for the nuclear propulsion of space vehicles, and made fundamental contributions to many of today's most challenging mathematical projects. With his wide-ranging interests, Ulam never emphasized the importance of his contributions to the research that resulted in the hydrogen bomb. Now Daniel Hirsch and William Mathews reveal the true story of Ulam's pivotal role in the making of the "Super," in their historical introduction to this behind-the-scenes look at the minds and ideas that ushered in the nuclear age. An epilogue by Françoise Ulam and Jan Mycielski sheds new light on Ulam's character and mathematical originality.
In Praise of Mathematics
Alain Badiou - 2015
Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Calculus
Dale E. Varberg - 1999
Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.
Introduction to Probability Models
Sheldon M. Ross - 1972
This updated edition of Ross's classic bestseller provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.This book now contains a new section on compound random variables that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions; a new section on hiddden Markov chains, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states; and a simplified approach for analyzing nonhomogeneous Poisson processes. There are also additional results on queues relating to the conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; inspection paradox for M/M/1 queues; and M/G/1 queue with server breakdown. Furthermore, the book includes new examples and exercises, along with compulsory material for new Exam 3 of the Society of Actuaries.This book is essential reading for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability.
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die
Eric Siegel - 2013
Rather than a "how to" for hands-on techies, the book entices lay-readers and experts alike by covering new case studies and the latest state-of-the-art techniques.You have been predicted — by companies, governments, law enforcement, hospitals, and universities. Their computers say, "I knew you were going to do that!" These institutions are seizing upon the power to predict whether you're going to click, buy, lie, or die.Why? For good reason: predicting human behavior combats financial risk, fortifies healthcare, conquers spam, toughens crime fighting, and boosts sales.How? Prediction is powered by the world's most potent, booming unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.Predictive analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future — lifting a bit of the fog off our hazy view of tomorrow — means pay dirt.In this rich, entertaining primer, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: -What type of mortgage risk Chase Bank predicted before the recession. -Predicting which people will drop out of school, cancel a subscription, or get divorced before they are even aware of it themselves. -Why early retirement decreases life expectancy and vegetarians miss fewer flights. -Five reasons why organizations predict death, including one health insurance company. -How U.S. Bank, European wireless carrier Telenor, and Obama's 2012 campaign calculated the way to most strongly influence each individual. -How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! -How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. -How judges and parole boards rely on crime-predicting computers to decide who stays in prison and who goes free. -What's predicted by the BBC, Citibank, ConEd, Facebook, Ford, Google, IBM, the IRS, Match.com, MTV, Netflix, Pandora, PayPal, Pfizer, and Wikipedia. A truly omnipresent science, predictive analytics affects everyone, every day. Although largely unseen, it drives millions of decisions, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.Predictive analytics transcends human perception. This book's final chapter answers the riddle: What often happens to you that cannot be witnessed, and that you can't even be sure has happened afterward — but that can be predicted in advance?Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
The Principles of Mathematics
Bertrand Russell - 1903
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.
The Art and Craft of Problem Solving
Paul Zeitz - 1999
Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.