Book picks similar to
Randomness and Complexity, from Leibniz to Chaitin by Cristian S. Calude
complexity
itbio
math-and-logi
mathematics
Mathematics in Western Culture
Morris Kline - 1953
Reveals the important contributions of mathematics to the physical and social sciences, philosophy, religion, literature, and art.
Emergence: The Connected Lives of Ants, Brains, Cities, and Software
Steven Johnson - 2001
Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.
A Beautiful Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature
Tom Siegfried - 2006
Today Nash's beautiful math has become a universal language for research in the social sciences and has infiltrated the realms of evolutionary biology, neuroscience, and even quantum physics. John Nash won the 1994 Nobel Prize in economics for pioneering research published in the 1950s on a new branch of mathematics known as game theory. At the time of Nash's early work, game theory was briefly popular among some mathematicians and Cold War analysts. But it remained obscure until the 1970s when evolutionary biologists began applying it to their work. In the 1980s economists began to embrace game theory. Since then it has found an ever expanding repertoire of applications among a wide range of scientific disciplines. Today neuroscientists peer into game players' brains, anthropologists play games with people from primitive cultures, biologists use games to explain the evolution of human language, and mathematicians exploit games to better understand social networks. A common thread connecting much of this research is its relevance to the ancient quest for a science of human social behavior, or a Code of Nature, in the spirit of the fictional science of psychohistory described in the famous Foundation novels by the late Isaac Asimov. In A Beautiful Math, acclaimed science writer Tom Siegfried describes how game theory links the life sciences, social sciences, and physical sciences in a way that may bring Asimov's dream closer to reality.
Theory of Games and Economic Behavior
John von Neumann - 1944
What began more than sixty years ago as a modest proposal that a mathematician and an economist write a short paper together blossomed, in 1944, when Princeton University Press published Theory of Games and Economic Behavior. In it, John von Neumann and Oskar Morgenstern conceived a groundbreaking mathematical theory of economic and social organization, based on a theory of games of strategy. Not only would this revolutionize economics, but the entirely new field of scientific inquiry it yielded--game theory--has since been widely used to analyze a host of real-world phenomena from arms races to optimal policy choices of presidential candidates, from vaccination policy to major league baseball salary negotiations. And it is today established throughout both the social sciences and a wide range of other sciences.This sixtieth anniversary edition includes not only the original text but also an introduction by Harold Kuhn, an afterword by Ariel Rubinstein, and reviews and articles on the book that appeared at the time of its original publication in the New York Times, tthe American Economic Review, and a variety of other publications. Together, these writings provide readers a matchless opportunity to more fully appreciate a work whose influence will yet resound for generations to come.
Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe
Amir D. Aczel - 2005
His apothegm "Cogito, ergo sum" marked the birth of the mind-body problem, while his creation of so-called Cartesian coordinates have made our physical and intellectual conquest of physical space possible.But Descartes had a mysterious and mystical side, as well. Almost certainly a member of the occult brotherhood of the Rosicrucians, he kept a secret notebook, now lost, most of which was written in code. After Descartes's death, Gottfried Leibniz, inventor of calculus and one of the greatest mathematicians in history, moved to Paris in search of this notebook--and eventually found it in the possession of Claude Clerselier, a friend of Descartes. Leibniz called on Clerselier and was allowed to copy only a couple of pages--which, though written in code, he amazingly deciphered there on the spot. Leibniz's hastily scribbled notes are all we have today of Descartes's notebook, which has disappeared.Why did Descartes keep a secret notebook, and what were its contents? The answers to these questions lead Amir Aczel and the reader on an exciting, swashbuckling journey, and offer a fascinating look at one of the great figures of Western culture.
Complexity: The Emerging Science at the Edge of Order and Chaos
M. Mitchell Waldrop - 1992
The science of complexity studies how single elements, such as a species or a stock, spontaneously organize into complicated structures like ecosystems and economies; stars become galaxies, and snowflakes avalanches almost as if these systems were obeying a hidden yearning for order. Drawing from diverse fields, scientific luminaries such as Nobel Laureates Murray Gell-Mann and Kenneth Arrow are studying complexity at a think tank called The Santa Fe Institute. The revolutionary new discoveries researchers have made there could change the face of every science from biology to cosmology to economics. M. Mitchell Waldrop's groundbreaking bestseller takes readers into the hearts and minds of these scientists to tell the story behind this scientific revolution as it unfolds.
On Growth and Form
D'Arcy Wentworth Thompson - 1917
Why do living things and physical phenomena take the forms they do? Analyzing the mathematical and physical aspects of biological processes, this historic work, first published in 1917, has become renowned as well for the poetry of is descriptions.
The Art of Doing Science and Engineering: Learning to Learn
Richard Hamming - 1996
By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned. Along with spectacular successes, the author also conveys how failures contributed to shaping the thought processes. Provides the reader with a style of thinking that will enhance a person's ability to function as a problem-solver of complex technical issues. Consists of a collection of stories about the author's participation in significant discoveries, relating how those discoveries came about and, most importantly, provides analysis about the thought processes and reasoning that took place as the author and his associates progressed through engineering problems.
Human Compatible: Artificial Intelligence and the Problem of Control
Stuart Russell - 2019
Conflict between humans and machines is seen as inevitable and its outcome all too predictable.In this groundbreaking book, distinguished AI researcher Stuart Russell argues that this scenario can be avoided, but only if we rethink AI from the ground up. Russell begins by exploring the idea of intelligence in humans and in machines. He describes the near-term benefits we can expect, from intelligent personal assistants to vastly accelerated scientific research, and outlines the AI breakthroughs that still have to happen before we reach superhuman AI. He also spells out the ways humans are already finding to misuse AI, from lethal autonomous weapons to viral sabotage.If the predicted breakthroughs occur and superhuman AI emerges, we will have created entities far more powerful than ourselves. How can we ensure they never, ever, have power over us? Russell suggests that we can rebuild AI on a new foundation, according to which machines are designed to be inherently uncertain about the human preferences they are required to satisfy. Such machines would be humble, altruistic, and committed to pursue our objectives, not theirs. This new foundation would allow us to create machines that are provably deferential and provably beneficial.In a 2014 editorial co-authored with Stephen Hawking, Russell wrote, "Success in creating AI would be the biggest event in human history. Unfortunately, it might also be the last." Solving the problem of control over AI is not just possible; it is the key that unlocks a future of unlimited promise.
How You Play the Game: A Philosopher Plays Minecraft (Kindle Single)
Charlie Huenemann - 2015
At a glance, it bears few similarities to any place we know and inhabit. But upon closer examination, the differences between this complex virtual reality and our own might not be as vast as we think. In “How You Play the Game,” author and philosopher Charlie Huenemann looks philosophically at the game of Minecraft (“What is the point of this game? How does one win? Well, this depends on what you want to do”) and grapples with the ethical conundrums, existential crises and moral responsibilities of the virtual realm. From the Overworld to the Ender Dragon, Huenemann offers an entertaining, insightful and often hilarious examination of Minecraft and the strange worlds—both virtual and not—surrounding it.Charlie Huenemann is a Professor of Philosophy at Utah State University. He writes for 3quarksdaily, and has published several books on the history of philosophy.Cover design by Adil Dara.
The Science of Information: From Language to Black Holes
Benjamin Schumacher - 2015
Never before in history have we been able to acquire, record, communicate, and use information in so many different forms. Never before have we had access to such vast quantities of data of every kind. This revolution goes far beyond the limitless content that fills our lives, because information also underlies our understanding of ourselves, the natural world, and the universe. It is the key that unites fields as different as linguistics, cryptography, neuroscience, genetics, economics, and quantum mechanics. And the fact that information bears no necessary connection to meaning makes it a profound puzzle that people with a passion for philosophy have pondered for centuries.Table of ContentsLECTURE 1The Transformability of Information 4LECTURE 2Computation and Logic Gates 17LECTURE 3Measuring Information 26LECTURE 4Entropy and the Average Surprise 34LECTURE 5Data Compression and Prefix-Free Codes 44LECTURE 6Encoding Images and Sounds 57LECTURE 7Noise and Channel Capacity 69LECTURE 8Error-Correcting Codes 82LECTURE 9Signals and Bandwidth 94LECTURE 10Cryptography and Key Entropy 110LECTURE 11Cryptanalysis and Unraveling the Enigma 119LECTURE 12Unbreakable Codes and Public Keys 130LECTURE 13What Genetic Information Can Do 140LECTURE 14Life’s Origins and DNA Computing 152LECTURE 15Neural Codes in the Brain 169LECTURE 16Entropy and Microstate Information 185LECTURE 17Erasure Cost and Reversible Computing 198LECTURE 18Horse Races and Stock Markets 213LECTURE 19Turing Machines and Algorithmic Information 226LECTURE 20Uncomputable Functions and Incompleteness 239LECTURE 21Qubits and Quantum Information 253LECTURE 22Quantum Cryptography via Entanglement 266LECTURE 23It from Bit: Physics from Information 281LECTURE 24The Meaning of Information 293
The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems, and Personalities
William Dunham - 1994
. .he believes these ideas to be accessible to the audience he wantsto reach, and he writes so that they are. -- NatureIf you want to encourage anyone's interest in math, get them TheMathematical Universe. * New Scientist
Gödel's Proof
Ernest Nagel - 1958
Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
Gödel's Theorem: An Incomplete Guide to Its Use and Abuse
Torkel Franzén - 2005
With exceptional clarity, Franz n gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of "Logical Dilemmas: The Life and Work of Kurt G del
How Nature Works: The Science of Self-Organized Criticality
Per Bak - 1996
This theory describes how many seemingly desperate aspects of the world, from stock market crashes to mass extinctions, avalanches to solar flares, all share a set of simple, easily described properties."...a'must read'...Bak writes with such ease and lucidity, and his ideas are so intriguing...essential reading for those interested in complex systems...it will reward a sufficiently skeptical reader." -NATURE"...presents the theory (self-organized criticality) in a form easily absorbed by the non-mathematically inclined reader." -BOSTON BOOK REVIEW"I picture Bak as a kind of scientific musketeer; flamboyant, touchy, full of swagger and ready to join every fray... His book is written with panache. The style is brisk, the content stimulating. I recommend it as a bracing experience." -NEW SCIENTIST