Book picks similar to
C++: How to Program by Harvey Deitel


programming
computer-science
reference
computers

Cryptography Engineering: Design Principles and Practical Applications


Niels Ferguson - 2010
    Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.

Expert C Programming: Deep C Secrets


Peter van der Linden - 1994
    This book will help the C programmer reach new heights as a professional. Organized to make it easy for the reader to scan to sections that are relevant to their immediate needs.

Purely Functional Data Structures


Chris Okasaki - 1996
    However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.

High Performance Browser Networking


Ilya Grigorik - 2013
    By understanding what the browser can and cannot do, you’ll be able to make better design decisions and deliver faster web applications to your users.Author Ilya Grigorik—a developer advocate and web performance engineer at Google—starts with the building blocks of TCP and UDP, and then dives into newer technologies such as HTTP 2.0, WebSockets, and WebRTC. This book explains the benefits of these technologies and helps you determine which ones to use for your next application.- Learn how TCP affects the performance of HTTP- Understand why mobile networks are slower than wired networks- Use best practices to address performance bottlenecks in HTTP- Discover how HTTP 2.0 (based on SPDY) will improve networking- Learn how to use Server Sent Events (SSE) for push updates, and WebSockets for XMPP chat- Explore WebRTC for browser-to-browser applications such as P2P video chat- Examine the architecture of a simple app that uses HTTP 2.0, SSE, WebSockets, and WebRTC

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

The Nature of Code


Daniel Shiffman - 2012
    Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.

The Design of the UNIX Operating System


Maurice J. Bach - 1986
    The leading selling UNIX internals book on the market.

Sams Teach Yourself C++ in 21 Days


Jesse Liberty - 1994
    It assumes no prior knowledge of programming and offers both solid instruction and the authors insights into best programming and learning practices. The book also provides a foundation for understanding object-oriented programming.

The Art of Multiprocessor Programming


Maurice Herlihy - 2008
    To leverage the performance and power of multiprocessor programming, also known as multicore programming, programmers need to learn the new principles, algorithms, and tools.The book will be of immediate use to programmers working with the new architectures. For example, the next generation of computer game consoles will all be multiprocessor-based, and the game industry is currently struggling to understand how to address the programming challenges presented by these machines. This change in the industry is so fundamental that it is certain to require a significant response by universities, and courses on multicore programming will become a staple of computer science curriculums.This book includes fully-developed Java examples detailing data structures, synchronization techniques, transactional memory, and more.Students in multiprocessor and multicore programming courses and engineers working with multiprocessor and multicore systems will find this book quite useful.

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

The C# Programming Yellow Book


Rob Miles - 2010
    With jokes, puns, and a rigorous problem solving based approach. You can download all the code samples used in the book from here: http://www.robmiles.com/s/Yellow-Book...

The Complete Software Developer's Career Guide: How to Learn Programming Languages Quickly, Ace Your Programming Interview, and Land Your Software Developer Dream Job


John Z. Sonmez - 2017
    As John invested in these skills his career took off, and he became a highly paid, highly sought-after developer and consultant. Today John helps more than 1.4 million programmers every year to increase their income by developing this unique blend of skills. "If you're a developer, green or a veteran, you owe it to yourself to read The Complete Software Developers Career Guide." - Jason Down, Platform Developer, Ontario, Canada What You Will Learn in This Book How to systematically find and fill the gaps in your technical knowledge so you can face any new challenge with confidence Should you take contract work - or hold out for a salaried position? Which will earn you more, what the tradeoffs are, and how your personality should sway your choice Should you learn JavaScript, C#, Python, C++? How to decide which programming language you should master first Ever notice how every job ever posted requires "3-5 years of experience," which you don't have? Simple solution for this frustrating chicken-and-egg problem that allows you to build legitimate job experience while you learn to code Is earning a computer science degree a necessity - or a total waste of time? How to get a college degree with maximum credibility and minimum debt Coding bootcampssome are great, some are complete scams. How to tell the difference so you don't find yourself cheated out of $10,000 Interviewer tells you, "Dress code is casual around here - the development team wears flipflops." What should you wear? How do you deal with a boss who's a micromanager. Plus how helping your manager with his goals can make you the MVP of your team The technical skills that every professional developer must have - but no one teaches you (most developers are missing some critical pieces, they don't teach this stuff in college, you're expected to just "know" this) An inside look at the recruiting industry. What that "friendly" recruiter really wants from you, how they get paid, and how to avoid getting pigeonholed into a job you'll hate Who Should Read This Book Entry-Level Developers This book will show you how to ensure you have the technical skills your future boss is looking for, create a resume that leaps off a hiring manager's desk, and escape the "no work experience" trap. Mid-Career Developers You'll see how to find and fill in gaps in your technical knowledge, position yourself as the one team member your boss can't live without, and turn those dreaded annual reviews into chance to make an iron-clad case for your salary bump. Senior Developers This book will show you how to become a specialist who can command above-market wages, how building a name for yourself can make opportunities come to you, and how to decide whether consulting or entrepreneurship are paths you should pursue.

Sams Teach Yourself SQL™ in 10 Minutes


Ben Forta - 1999
    It also covers MySQL, and PostgreSQL. It contains examples which have been tested against each SQL platform, with incompatibilities or platform distinctives called out and explained.

Implementing Domain-Driven Design


Vaughn Vernon - 2013
    Vaughn Vernon couples guided approaches to implementation with modern architectures, highlighting the importance and value of focusing on the business domain while balancing technical considerations.Building on Eric Evans’ seminal book, Domain-Driven Design, the author presents practical DDD techniques through examples from familiar domains. Each principle is backed up by realistic Java examples–all applicable to C# developers–and all content is tied together by a single case study: the delivery of a large-scale Scrum-based SaaS system for a multitenant environment.The author takes you far beyond “DDD-lite” approaches that embrace DDD solely as a technical toolset, and shows you how to fully leverage DDD’s “strategic design patterns” using Bounded Context, Context Maps, and the Ubiquitous Language. Using these techniques and examples, you can reduce time to market and improve quality, as you build software that is more flexible, more scalable, and more tightly aligned to business goals.